首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
微生物在恶臭污染治理中的研究及应用   总被引:4,自引:0,他引:4  
近年来,随着人们对恶臭污染重视程度的不断提高,针对恶臭气体控制和治理的研究也逐渐增多,其中微生物脱臭因其成本低、处理设备要求简易、基本无二次污染等较物理除臭和化学除臭无可比拟的优点,成为研究人员的关注热点.本文概述了微生物脱臭的过程和机理,主要介绍微生物脱臭技术分类和优缺点比较,以及微生物脱臭在恶臭污染治理中的研究与应...  相似文献   

2.
利用生物填充塔处理生活污水厂臭气的研究*   总被引:4,自引:0,他引:4  
通过对城市生活污水厂逸出臭气所进行的净化治理的中试研究,考察了生物填充塔在不同条件下的运行性能,探讨了pH的变化对生物填充塔的影响以及填充塔内微生物的分布与恶臭气体去除的关系。结果表明,接种脱臭微生物菌群的生物填充塔在合适的工艺条件下能有效地去除生活污水厂臭气中的主要成份一硫化氢,同时能耐受一定负荷冲击,并且能在酸性条件下稳定运行。  相似文献   

3.
随着养殖业的发展禽畜废弃物已经成为有机废弃物的主要来源之一,并产生了很多恶臭气体,对环境造成了严重污染。论述了恶臭气体的发生、危害及国内外物理、化学、生化和生物法过程控制的研究进展,并在此基础上提出了微生物在禽畜废弃物恶臭气体控制中的问题和研究展望。  相似文献   

4.
<正> 854223气体和液体中硫化氢的微生物氧化[专,德]/Hoechst DE3300-402:07.01.83-DE-300402(11.10.84)07.01.83 as30040284-257203/42(12页)[译自DBA,1985,4(1),85-00532]用氧化法除去气体和液中硫化氢是通过  相似文献   

5.
叶际微生物作为最先定殖在凋落叶上的微生物类群,可能直接参与凋落叶的分解。为验证此猜想,该研究通过扩增子高通量测序技术和室内分解实验,探究了马尾松(Pinusmassoniana)叶际微生物多样性及叶际微生物对马尾松凋落物的分解影响。结果表明:(1)马尾松的叶际存在着丰富而多样的微生物群体,针叶在凋亡后,叶际微生物群落发生变化。成熟针叶、凋落针叶、分解层针叶共有大量可操作分类单元(OTUs)。(2)马尾松针叶分解过程可分为两个阶段:快速分解期(前8个月)和缓慢分解期(8个月以后)。衰亡针叶(刚凋落但未接触土壤)叶际微生物可直接参与马尾松凋落针叶分解,且分解速率表现为叶际微生物+土壤微生物处理>叶际微生物处理>土壤微生物处理。在马尾松针叶分解过程中叶际微生物与土壤微生物存在协同作用。(3)凋落针叶分解速率与木质素和纤维素分解速率呈极显著正相关关系,但与木质素和纤维素分解酶活性无显著相关关系。木质素分解酶——多酚氧化酶与过氧化物酶活性极显著负相关,纤维素分解酶——β葡萄糖苷酶活性与纤维二糖苷酶活性则呈极显著正相关关系。综上,该研究结果表明叶际微生物可直接参与凋落针叶的分解,且其对...  相似文献   

6.
城市垃圾堆肥过程中的生物学问题研究   总被引:15,自引:0,他引:15  
介绍了城市垃圾堆肥处理的主要工艺,详细分析了垃圾堆肥过程中的生物化学变化和微生物学原理及研究现状。提出了可以将耗氧速率、C/N比、pH值作为堆肥腐熟度在线监测指标及在堆肥过程中,添加高效复合微生物接种剂可加快有机物的分解,缩短发酵周期,减少恶臭气体的产生,提高堆肥制品质量。  相似文献   

7.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

8.
生物焦是生物残体在厌氧条件下高温裂解产生的,其主要成分为碳,芳香化程度很高,具有孔隙多、比表面积大、电荷密度高、不易分解等特点。目前的一些研究显示,生物焦具有提高土壤阳离子交换量(CEC)和pH、改善土壤肥力和健康状况、增加作物产量、减少温室气体排放等作用。生物焦施于土壤后,还具有增加土壤微生物量、改变土壤微生物群落结构,促进部分微生物生长等影响效应。然而,目前有关生物焦的研究还大都局限于表观效应上,缺乏对其微观内在机制的深入探讨。  相似文献   

9.
CNl01791421A一种去除多种有毒害物质的微生物清洁菌剂本发明涉及一种去除多种有毒害物质的微生物清洁菌剂及制备方法,该微生物清洁菌剂包括复合微生物菌系原种液在工业发酵培养液中的发酵产物与复合香草醋萃取液的混合物。本发明利用微生物菌系的高效吸附、吸收和代谢作用,通过降解和分解过程对环境中的醛类、苯类、醇类、酯类、酚类、胺类、烷类、含硫类、腐败菌分泌物以及致病菌和致病菌分泌物等恶臭气体或其溶液的有毒害物质进行净化治理,将房屋装修、办公家具、新车装潢中释放的甲醛、苯等环境中的有毒害物质转化为无毒无害无臭的物质;同时对致病菌及其分泌物起到消毒杀菌的作用,达到彻底改善空气质量、保护人民身体健康的目标。  相似文献   

10.
CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响   总被引:8,自引:0,他引:8  
关于大气CO2浓度倍增(即为700μmolCO2·mol-1空气)将对植物生长产生诸多影响,已有大量报道[1,2]。但CO2倍增对植物及所在土壤中微生物影响的研究甚少[3,4]。土壤微生物是陆地生态系统中最活跃的成分,担负着分解动植物残体的重要作用,...  相似文献   

11.
14C示踪技术在土壤有机质周转研究中的应用   总被引:4,自引:0,他引:4  
采用碳同位素标记有机材料能够较真实地反映其在土壤中的分解和转化过程,是研究土壤有机质周转动力学的必要方法。本文介绍了^14C示踪技术在土壤腐殖质的形成与分解过程、有机底物在土壤中的分解和转化及其对原有土壤有机质分解的影响、土壤微生物生物量碳及其周转以及温室气体排放等方面研究中的应用进展。  相似文献   

12.
煤除硫的重大突破是由芝加哥气体技术研究所(IGT)实现的,该所的生物技术研究者们开发出的一种可从有机原料中除去硫而剩下全部碳的微生物培养法。这一发明的重要性在于,这种被称为IGTS7的培养物除去有机硫而不损失燃料热值的能力。此项研究是由美国能源部资助的。  相似文献   

13.
以腾格里沙漠东南缘沙坡头人工固沙植被区典型植物种凋落物(小画眉草、藓类、油蒿叶片)为对象,运用凋落物分解袋法和高通量测序技术,分析了3种植物凋落物分解特征及其对土壤微生物群落的影响。结果表明: 分解时间和凋落物类型均显著影响分解速率,藓类分解最慢,13个月后质量损失比仅为15.4%,油蒿叶片和小画眉草的平均分解速率分别是藓类的4.9和3.4倍。经过11个月的分解,细菌群落的优势菌门为放线菌门和变形菌门,真菌群落的优势菌门是子囊菌门;藓类分解过程中,拟杆菌门和绿弯菌门的相对丰度显著增加,担子菌门的相对丰度显著降低。凋落物分解后,细菌和真菌群落物种多样性和丰富度显著增加,细菌群落组成在凋落物间变化不显著,真菌群落变化显著。凋落物的分解速率与细菌和真菌群落多样性及丰富度均呈负线性变化。植物多糖、全磷和土壤pH、微生物生物量氮、铵态氮含量是影响微生物群落结构的主要因子。凋落物分解改变了土壤微生物群落物种组成和种间相似性,显著增加了土壤中微生物群落的多样性和丰富度,促进了土壤生境的恢复。  相似文献   

14.
<正>目前流行的石油、天然气和铀矿开采技术,主要是基于地质科学和地球物理科学的勘探技术。而基于微生物技术的烃类气体勘探技术则较为少用。烃类气体勘探技术的基础是烃类气体能够通过油气藏储层结构的土壤缝隙向地表迁移。早期的石油和天然气勘探就是通过甲烷或原油的地表面微渗漏发  相似文献   

15.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

16.
土壤生物多样性与微量气体(CO2、CH4、N2O)代谢   总被引:14,自引:2,他引:12  
土壤生物是重要的基因库 ,土壤生物多样性是全球生物多样性的重要组成部分。土壤生物是C、N地球化学过程 (土壤库 )的驱动者 ,调控微量气体代谢。在微量气体代谢中 ,土壤微生物具有直接的作用。真菌、CH4 生成菌、CH4 氧化菌、硝化菌以及反硝化菌等是调控微量气体代谢的关键生态功能类群。由于相对大的体积和强大的酶化学分解作用 ,真菌通常主导枯枝落叶的分解活动。“通气—厌气”界面是微生物群落的活跃区域 ,易发生微量气体代谢。“有机—无机”过渡层、水生植物根际区、土壤动物肠道系统是典型的微量气体代谢界面。土壤动物对微量气体代谢的作用通常为前期的和间接的 ,并且又是重要的。节肢动物 (白蚁 )和环节动物 (蚯蚓 )是分别代谢CH4 和N2 O的两个关键性生态功能类群。在研究土壤生物多样性及其对微量气体代谢的作用方面 ,由于土壤生态系统的复杂性 ,需综合传统微生物实验技术与现代同位素技术和分子生物学技术。我国缺乏研究土壤生物多样性及其对微量气体代谢影响的实质性工作 ,有必要开展这方面的研究。  相似文献   

17.
为了解凋落物分解过程中碎屑食物链土壤动物与微生物的相互联系,本研究以川西亚高山森林杨树和箭竹凋落叶为对象,通过原位控制试验,于2016年4月至2018年4月采用磷脂脂肪酸(PLFAs)生物标记法,研究了土壤动物对两种凋落叶分解过程中微生物丰度、群落结构和多样性的影响.结果表明: 土壤动物的参与显著影响两个树种凋落叶分解过程中微生物PLFAs含量,降低了分解前240天的PLFAs含量,增加了分解360~480 d的PLFAs含量;土壤动物的参与降低了杨树分解过程中的真菌/细菌比值,增加了革兰氏阳性菌(G+)/革兰氏阴性菌(G-)比值,对箭竹分解过程中真菌/细菌和G+/G-比值的影响作用相反;两个树种凋落叶的微生物多样性和均匀性在分解的120 d和480 d维持着较高水平,在分解的360 d和720 d急剧降低,土壤动物的参与显著影响杨树凋落叶的微生物多样性和均匀性,但对箭竹影响不显著;土壤动物对凋落叶微生物PLFAs变化的影响随分解持续时间和树种变化存在差异.亚高山森林凋落物分解过程中土壤动物与微生物群落的相互作用随季节和树种变化具有变异性.  相似文献   

18.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

19.
本文对毛白杨落叶在土壤中的分解进行了为期一年的研究。结果表明:土壤微生物的活动导致落叶中氮、水溶性糖、钾和钙含量的变化,而落叶中磷、钠和镁的含量变化不显著;落叶分解可提高土壤中氮的含量,土壤中有效钾在分解前期也有明显提高。设计的室内保温保湿试验表明温度和湿度明显地影响分解程度,但对分解变化的趋势和微生物的演替影响较小。  相似文献   

20.
土壤有机质的分解需要一系列环境微生物的参与,包括上游微生物进行有机质的初步分解、中间微生物的再分解利用和下游微生物的最终代谢过程.由微生物分泌的胞外水解酶将复杂有机质转变为简单有机质是整个分解过程的关键.近年来,针对肠道复杂有机质的微生物分解研究取得了显著进展,本文首先比较了有机质分解过程在人体肠道、反刍动物瘤胃和土壤...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号