首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncoupling agent releases the respiratory control of rat hepatocytes to approximately the same degree as in isolated mitochondria indicating that mitochondria in situ possess a low H+ conductance as in vitro. Mitochondria also have no detectable natural K+ conductance since the ionophore, valinomycin, is required for K+ ions to uncouple. Na+ but not K+ or choline inhibits the uncoupled respiration of liver cells. This is consistent with operation of neutral mitochondrial Na+ for H+ exchange in vivo. These results indicate a considerable similarity between certain functional and permeability properties of mitochondria in vitro and in situ. These similarities form the basis for discussion of the role of mitochondrial ion transport in metabolic regulation.  相似文献   

2.
Measurements were made of the effect of dicationic (oxidized) and monocationic radical (reduced) forms of benzyl viologen (BV) and methyl viologen (MV) on the ion conductance across planar phospholipid bilayers under conditions of constant voltage. BV+ at 60 μM greatly increased ion conductance whereas BV2+, MV+ and MV2+ did not. Ion permeability ratios relative to nitrate were determined in the BV+ system. BV+ appears to be the first example of a perfectly anion-selective ionophore of the carrier type. BV+ probably functions both as an electron carrier and ionophore for nitrate while catalyzing the dithionite-nitrate reductase reaction in Paracoccusdenitrificans.  相似文献   

3.
On the basis of the calculated magnitude of the unidirectional flux through a gramicidin channel, it was predicted that a single conducting event should be sufficient to release trapped 22Na+ or 42K+ from phospholipid vesicles with a consequent apparent loss of K+Na+ ion selectivity. In support of this prediction, the introduction of gramicidin to the bathing solution of phospholipid vesicles containing trapped 22Na+ or 42K+ led to a release of vesicle contents which was consistent with the expectation that, for each gramicidin dimer present, the contents of approximately one vesicle are released. The predicted apparent loss of K+Na+ selectivity was also observed. Evidence was also presented suggesting some movement of gramicidin from vesicle to vesicle. The fluorescent intensity of gramicidin decreases with time when added to aqueous solutions at very low concentrations. It is proposed that this is a consequence of the extremely low solubility of gramicidin in water. On the basis of area per molecule calculations at the air-water interface, it was argued that the most likely conformation of gramicidin existing at the air-water interface, of those proposed in the literature, was that of ΠL,D6 helix.  相似文献   

4.
The kinetics of the sodium binding to the ionophore monensin (Mon) in methanol has been studied by 23Na NMR spectroscopy. Fast quadrupole relaxation of the bound sodium affected the relaxation rate of the free sodium through an exchange process between these two species. The exchange was found to be dominated by the reaction: Na+ + Mon? ? MonNa. The dissociation rate constant at 25°C is 63 s?1, with an activation enthalpy of 10.3 kcalmol and activation entropy of ?15.8 calmol deg. These results indicate that the specificity of the binding of sodium ions to monensin is reflected in the relatively slow dissociation process. The entropy changes indicate that the activated monensin-sodium complex undergoes a conformational change, but the existence of a conformational change in monensin anion prior to complexation is excluded.  相似文献   

5.
Membrane vesicles prepared from E. coli B strain 29–78 require Na+ for the accumulation of glutamate. Respiratory-driven transport of glutamate but not lysine is sensitive to the ionophore monensin. An artificially-imposed sodium gradient and/or membrane potential drives glutamate uptake. These results suggest that glutamate is accumulated via a Na+/glutamate symport.  相似文献   

6.
The effect of a neutral synthetic Ca2+-ligand, which induces selective Ca2+-transport in electrodialysis experiments in bulk membranes, on the Ca2+ permeability of phospholipid bilayers has been investigated. The ligand is able to promote the transport of Ca2+ across synthetic phospholipid bilayers and can therefore be classified as a Ca2+-ionophore. Its activity is enhancedby the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The efficiency of the neutral carrier-mediated Ca2+ transport is rather low as compared with that of the charged Ca2+-ionophore X537A.The Ca2+ selectivity of the neutral ionophore is decreased by its incorporation in the low dielectric ambient of the phospholipid bilayer.  相似文献   

7.
The protein neurotoxin II from the venom of the scorpion Androctonusaustralis Hector was labeled with 125I by the lactoperoxidase method to a specific radioactivity of about 100 μCi/μg without loss of biological activity. The labeled neurotoxin binds specifically to a single class of non intereacting binding sites of high affinity (KD = 0.3 – 0.6 nM) and low capacity (4000 – 8000 sites/cell) to electrically excitable neuroblastoma cells. Relation of these sites to the action potential Na+ channel is derived from identical concentration dependence of scorpion toxin binding and increase in duration and amplitude of action potential. The protein neurotoxin II from the sea anemone Anemona sulcata also affects the closing of the action potential Na+ ionophore in nerve axons. The unlabelled sea anemone toxin modifies 125I-labeled scorpion toxin II binding to neuroblastoma cells by increasing the apparent KD for labeled scorpion toxin without modification of the number of binding sites. It is concluded that both Androctonus scorpion toxin II and Anemona sea anemone toxin II interact competitively with a regulatory component of the action potential Na+ channel.  相似文献   

8.
The noise free 300 MHz 1H NMR spectra of β-DPN+, recorded in the Fourier mode at 12° and 68°C have been completely analysed by extensive computer simulation. It is shown, whether the coenzyme exists as an equilibrium mixture of folded ? extended forms (12°C) or in overwhelminghly extended forms (68°C), the backbone of both the nicotinamide and adenine fragments preferentially exist in 2E-gg-g′g′ conformation. This orientation is significantly different from those reported in the solid state for the extended species in contact with the enzyme where 2E-tg-g′g′ and 3E-tg-g′g′ orientations have been observed. It is suggested that specific interactions of the backbone with the various amino acid residues in the enzyme induces conformational aberrations in the backbone. Intimate details of the backbone conformation of the extended forms of AcPy-DPN+ and β-TPN+ are also presented.  相似文献   

9.
A possible mechanism for the Na,K-ATPase   总被引:2,自引:0,他引:2  
A model previously described for the Ca2+ pump of sarcoplasmic reticulum has been modified in a thought experiment so that it has the properties of a Na,K-adenosinetriphosphatase (ATPase). When the two Ca2+-specific sites are changed into three Na+-specific sites, and the channel which opens in the actively transporting conformation made univalent- instead of divalent-cation-selective, the model has the properties of the Na-ATPase which is observed on red cell membranes in the absence of both Na+ and K+ externally. As in the model for the Ca-ATPase the driving force for transport is generated by a change in solvent structure so that a preformed ionic equilibrium is displaced in favour of less-highly hydrated species; in this case highly hydrated Mg2+ ions displace the less highly hydrated Na+ ions from binding sites; and Na+ diffuses out through a simultaneously opened channel. With the addition of three external K+-selective sites per α-polypeptide chain, and the constraint that pump units with their external sites occupied by any univalent cation cannot be phosphorylated by ATP, the model turns out to have the properties of a Na,K-ATPase. It operates in the Na+K+ exchange, Na+Na+ exchange, K+K+ exchange, K+-dependent phosphatase, uncoupled Na+ efflux and pump reversal modes. It is concluded that if the modified water in the cleft of the phospho-enzymes has properties similar to those of water at 5°C the pump is competent to exchange three intracellular Na+ ions for two extracellular K+ ions, and one intracellular Na+ ion but it is incapable of exchanging three Na+ ions for three K+ ions.  相似文献   

10.
Turtle bladders bathed on both surfaces with identical HCO?3/CO2-rich, Cl?-free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 μM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents inhibits the concurrent acidification process as well.  相似文献   

11.
The effect of X537A on acetylcholine (ACh) release was examined in vitro in superfused slices of rat cerebrum and striatum. The ionophore (30 μM) induced a transient release of ACh which was not dependent on calcium in the medium. Also in contrast to K+-stimulated release, X537A-induced release was not sustained by 10?5M choline in the superfusion medium and not inhibited by 5 × 10?4M pentobarbital. The ionophore did not transport ACh or choline from an aqueous to an organic phase. Both K+ and X537A inhibited 1 μM (3H) choline uptake into striatal synaptosomes but this effect of X537A was more extensive and less reversible than that caused by K+. X537A did not inhibit choline acetyltransferase activity.  相似文献   

12.
Depletion of mitochondrial divalent cations by addition of the ionophore A23187 results in a marked increase in passive 42K+K+ exchange activity. The exchange is activated by increasing pH and temperature and inhibited by added divalent cations. The reaction is independent of the amount of A23187 present, but depends on the concentration of external K+ (Km = 25 mm). Intramitochondrial 42K+ in cation-depleted mitochondria exchanges passively with external Na+ and Li+, but not with choline+. The evidence suggests that removal of mitochondrial divalent cations by A23187 activates the endogenous K+H+ exchange component of the mitochondrion and that the activated exchanger promotes cation/cation exchange in the absence of a metabolic pH gradient.  相似文献   

13.
The antibiotic A23187 carries Ca2+ across Müller-Rudin membranes made from 1,2-dierucoyl-sn-glycero-3-phosphocholine and n-decane. The conductance of the membranes is not increased by the Ca2+-transport. The flux depends linearly on Ca2+ concentration and ionophore concentration (above pH 6). It increases with increasing pH, approximately by a factor of 4–5 between pH 6 and pH 8. Maximal Ca2+-fluxes of about 10?10mol · cm?2 · s?1 were found. A counter transport of H+ could not be detected.The complex formation between A23187 and Ca2+ in egg phosphatidylcholine vesicles was studied spectroscopically. The results are consistent with the formation of a 2 : 1 complex. Optical absorption measurements on single phosphatidylcholine membranes were used to calculate the concentration of membrane-bound ionophore A23187.  相似文献   

14.
When compound 4880, a potent histamine liberator, was added in the aqueous phase facing the black lipid membrane, the conductivity of the membrane was remarkably increased. Although valinomycin displayed a distinct selectivity for K+ movement, such selection for ionic permeability was not observed in the case of compound 4880.  相似文献   

15.
1. The ionophore X-537A increases the rate of catecholamine release from the in vitro frog adrenal.2. The ratio of epinephrine/norepinephrine measured during X-537A stimulation was the same as that during spontaneous release.3. Even when Ca++ was removed from the Ringer, X-537A stimulated catecholamine release, but depolarization by elevated extra-cellular K+ was no longer effective.4. X-537A also increases the release of dopamine β-hydroxylase, suggesting that the ionophore acts, at least in part, by stimulating the exocytosis of the chrommaffin granule contents.5. Therefore, it is questionable whether the release of catecholamines by X-537A is owing to its action as a Ca++- ionophore.6. The divalent cation ionophore, A-23187 (50μM), did not affect the rate of catecholamine release.  相似文献   

16.
At pH 6.5 in a 0.05 M bis-Tris-0.1 M Cl? buffer, tetra aquo ferrihemoglobin A (HbA+) binds CN? with a Hill coefficient of n = 1.4. The Hill coefficient increases slightly and the average CN? affinity decreases in the presence of excess spin labeled triphosphate (SLTP). This is probably the result of the finding that the SLTP exhibits a twofold higher affinity for HbA+ than for tetra cyano HbA+. Over the course of heme saturation with CN?, a certain fraction of the SLTP is specifically released. This shows linkage between organic phosphate binding and heme ligation. These findings bear a marked resemblance to the ligand binding phenomena in hemoglobin A (HbA) and provide good evidence that under these experimental conditions, HbA+ is undergoing a quaternary conformation change as the hemes become saturated.  相似文献   

17.
A non-alkalophilic mutant strain of Bacillusalcalophilus grows on L-malate over a pH range from 5.0 to 9.0. The mutant does not exhibit the energy-dependent efflux of Na+ that has been used to assay a Na+H+ antiporter in the wild type organism. The mutant also fails to transport α-aminoisobutyric acid, at pH 9.0, either in the presence or absence of Na+; at pH 5.5, the amino acid analogue is taken up by a Na+-independent mechanism. The properties of the mutant constitute strong evidence that the Na+H+ antiporter is involved in maintaining an acidified cytoplasm in B. alcalophilus.  相似文献   

18.
Renilla lumisomes produce a bioluminescent flash when the vesicles are disrupted with hypotonic solutions containing Ca2+. A flash is also observed in the presence of Ca2+ using isotonic solutions of monovalent cations under the following conditions: When the Na+K+ ratio inside the lumisomal membrane is high and when this ratio outside the membrane is low. We suggest that Na+ may be the counter ion for Ca2+ transport. Na+, when outside the membrane, inhibits Ca2+-triggered luminescence suggesting that Na+ blocks Ca2+ channels. Ca2+ uptake into the lumisomal membrane, as measured by bioluminescence, is very rapid in the presence of the ionophore A23187. X537A is much less effective. The Ca2+ triggered bioluminescence flash observed with lumisomes provides a rapid and sensitive assay for ionophores that are specific for divalent cations such as Ca2+.  相似文献   

19.
An acyl-CoA carboxylase, which catalyzes the carboxylation of acetylpropionyl-, and butyryl-CoA, has been isolated from the tapeworm Spirometramansonoides. The enzyme has an absolute requirement for ATP, Mg2+, and HCO3? and, in addition, requires K+ for full catalytic activity. The enzyme has been purified 50-fold by a combination of calcium phosphate gel adsorption, ion-exchange column chromatography, and gel filtration. In its substrate specificity, K+ requirement, molecular size, and antigenic behavior, the tapeworm enzyme is similar to the acyl-CoA carboxylase of another helminth— the free-living nematode Turbatrixaceti.  相似文献   

20.
Effects of the ionophore A23187 on isolated broken and intact chloroplasts in the pH range of 6.2 to 7.6 have been studied. In both types of chloroplasts, uncoupling of photosynthetic electron transport by A23187 (6–10 μm) was mediated either by Mg2+ or—in the absence of divalent cations (i.e., when EDTA was added to the medium)—by high concentrations of Na+, but not of K+ ions. At increased concentrations of the ionophore (above about 10 μm) and high pH (7.2 to 7.6), uncoupling in broken chloroplasts was also mediated by K+ ions. The inhibition of the energy-dependent slow decline of chlorophyll fluorescence in intact chloroplasts by the ionophore (which denotes uncoupling) is reversed by EDTA in the presence of K+, but not of Na+ ions. In 3-(3′,4′-dichlorophenyl)1,1-dimethylurea-poisoned intact chloroplasts, the yield of variable chlorophyll fluorescence is lowered by A23187 + EDTA and increased again by addition of NaCl or KCl. Chlorophyll fluorescence spectra at 77 °K of intact chloroplasts incubated with A23187 + EDTA indicated that the distribution of excitation energy had changed in favor of photosystem I, as expected from a depletion of Mg2+. This change was reversed by MgCl2+, KCl, or NaCl. From a comparison of low-temperature fluorescence spectra of broken and intact chloroplasts at different levels of Mg2+ in the medium, the concentration of free Mg2+ in the stroma of the intact chloroplasts at pH 7.6 in the dark was estimated at 1 to 4 mm. The results show that in chloroplasts the specificity of A23187 for divalent cations is limited. In the presence of EDTA, the ionophore mediates fast Na+H+ exchange across thylakoid membranes, whereas K+ is transferred much less efficiently. Both Na+ and K+ ions seem to be transported readily across the chloroplast envelope by the action of the ionophore, leading to an exchange of Mg2+ for monovalent cations at the thylakoid membrane surfaces in intact chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号