首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Ohama  F Yamao  A Muto    S Osawa 《Journal of bacteriology》1987,169(10):4770-4777
The DNA sequence of the Micrococcus luteus str operon, which includes genes for ribosomal proteins S12 (str or rpsL) and S7 (rpsG) and elongation factors (EF) G (fus) and Tu (tuf), has been determined and compared with the corresponding sequence of Escherichia coli to estimate the effect of high genomic G + C content (74%) of M. luteus on the codon usage pattern. The gene organization in this operon and the deduced amino acid sequence of each corresponding protein are well conserved between the two species. The mean G + C content of the M. luteus str operon is 67%, which is much higher than that of E. coli (51%). The codon usage pattern of M. luteus is very different from that of E. coli and extremely biased to the use of G and C in silent positions. About 95% (1,309 of 1,382) of codons have G or C at the third position. Codon GUG is used for initiation of S12, EF-G, and EF-Tu, and AUG is used only in S7, whereas GUG initiates only one of the EF-Tu's in E. coli. UGA is the predominant termination codon in M. luteus, in contrast to UAA in E. coli.  相似文献   

2.
Efficient expression in Escherichia coli (E. coli) of the human interferon-beta gene (IFN-beta) gene and of a chemically synthesized IFN-beta gene variant (506 base pairs; synIFN-beta) adapted to the E. coli codon usage, both fused to the E. coli atpE ribosome-binding site, is controlled either by primary sequence or by mRNA secondary-structure in the translational initiation region. High level expression of the natural human atpE/IFN-beta gene fusion is governed by the nucleotide composition preceding the initiator codon AUG. A single U----C exchange in the -2 or -1 position preceding the initiator codon AUG reduces the translational efficiency from 18% of total cellular protein to only 8% or 4%, respectively, while both U----C substitutions reduce IFN-beta expression below 1%. These sequence alterations interfere with efficient ribosome binding as revealed by toeprinting. They provide further evidence for the influence of the anticodon-flanking regions of tRNA(fMet) upon the initiation rate of translation. In contrast, translation of the synthetic variant atpE/synIFN-beta gene fusion is controlled by a moderately stable stem-loop structure (delta G = -4 kcal/mol; 37 degrees C) located within the coding region and overlapping the 30 S ribosomal subunit attachment site. That the stability of the hairpin interferes with the initiation of translation is inferred from site-directed mutagenesis and toeprint analyses. mRNA half-life in these variants is positively correlated with the rate of translation and involves two major endonucleolytic cleavage site 5'-upstream of the Shine-Dalgarno region.  相似文献   

3.
The DNA sequence of the dnaK gene of Escherichia coli was analyzed. The nucleotide sequence of the wild-type dnaK gene of E. coli B differed from that of E. coli K-12 in 15 bp, none of which altered the amino acid sequence. Two temperature-sensitive dnaK mutations were examined by cloning and sequence analyses. Results showed that one dnaK mutation, dnaK7(Ts), was a one-base substitution of T for C at nucleotide position 448 in the open reading frame yielding an amber nonsense codon. The other mutation, dnaK756(Ts), consisted of base substitutions (A for G) at three nucleotide positions, 95, 1364, and 1403, in the open reading frame resulting in an aspartic acid codon in place of a glycine codon.  相似文献   

4.
Metapyrocatechase which catalyzes the oxygenative ring cleavage of catechol to form alpha-hydroxymuconic epsilon-semialdehyde is encoded by the xylE gene on the TOL plasmid of Pseudomonas putida mt-2. We have cloned the xylE region in Escherichia coli and determined the nucleotide sequence of the DNA fragment of 985 base pairs around the gene. The fragment included only one open translational frame of sufficient length to accommodate the enzyme. The predicted amino acid sequence consisted of 307 residues, and its NH2- and COOH-terminal sequences were in perfect agreement with those of the enzyme recently determined (Nakai, C., Hori, K., Kagamiyama, H., Nakazawa, T., and Nozaki, M. (1983) J. Biol. Chem. 258, 2916-2922). A mutant plasmid was isolated which did not direct the synthesis of the active enzyme. This plasmid had a DNA region corresponding to the NH2-terminal two-thirds of the polypeptide. From the deduced amino acid sequence, the secondary structure was predicted. Around 10 base pairs upstream from the initiator codon for metapyrocatechase, there was a base sequence which was complementary to the 3'-end of 16 S rRNAs from both E.coli and Pseudomonas aeruginosa. A preferential usage of C- and G-terminated codons was found in the coding region xylE, which contributed to the relatively high G + C content (57%) of this gene.  相似文献   

5.
6.
7.
A novel kanamycin phosphotransferase gene, aphA-7, was cloned from a 14-kb plasmid obtained from a strain of Campylobacter jejuni and the nucleotide sequence of the gene was determined. The presumed open reading frame of the aphA-7 structural gene was 753 bp in length and encoded a protein of 251 amino acids with a calculated weight of 29,691 Da. A 29-kDa protein was demonstrated in Escherichia coli maxicells containing the cloned aphA-7 gene. A ribosomal binding site corresponding to 5 of 8 bases of the 3' end of the E. coli 16S rRNA was 8 bp upstream of the start codon. Sequences corresponding to the -35 and -10 regions of the consensus promoter sequences of E. coli were upstream of the presumed initiation codon of the gene. The DNA sequence was most closely related to the aphA-3 gene from Streptococcus faecalis, showing 55.4% sequence similarity. There was 45.6% identity at the amino acid level between the aphA-3 and the aphA-7 proteins. Of the three conserved regions noted previously in phosphotransferase genes, the aphA-7 amino acid sequence was identical to the six conserved amino acids in motif 3, but differed in one of the five conserved amino acids in motif 1 (if gaps are permitted) and 3 of the 10 conserved residues in motif 2. The 32.8% G + C ratio in the open reading frame of the aphA-7 kanamycin resistance gene, which is similar to that of the C. jejuni chromosome, suggests that the aphA-7 may be indigenous to Campylobacters.  相似文献   

8.
The gene for L-lactate dehydrogenase (LDH) from Thermus aquaticus YT-1 was cloned in Escherichia coli, using the Thermus caldophilus LDH gene as a hybridization probe, and its complete nucleotide sequence was determined. The LDH gene comprised 930 base pairs, starting with a GTG initiation codon. Its sequence had high homology (85.8% identity) with the LDH gene of T. caldophilus. The G + C content of the T. aquaticus gene was 70.9%, higher than that of the chromosomal DNA (67.4%). In particular, that in the third position of the codons used was 91.0%, similar to the T. caldophilus gene. The primary structure of T. aquaticus LDH was deduced from the nucleotide sequence of the LDH gene. It comprises 310 amino acid residues, as does T. caldophilus LDH, and its molecular mass was calculated to be 33,210 daltons. The amino acid sequence of the T. aquaticus LDH had 87.1% identity with that of the T. caldophilus LDH. At 23 positions, the respective residues differed in charge and polarity. These differences must be related to the differences in kinetic properties between the two enzymes. The constructed plasmid overproduced the T. aquaticus LDH in E. coli.  相似文献   

9.
10.
11.
The tufB gene encoding elongation factor Tu (EF-Tu) of Thermus thermophilus HB8 was cloned and expressed. Compared with the known tufA gene of T. thermophilus, nucleotide differences were found at 10 positions out of 1221 nucleotides, and amino acid substitutions were found at 4 positions out of 406 amino acids. The tufB product was 70.9% homologous to the corresponding sequence of the tufB product of E. coli. The G+C content of the third base of the codon in the tufB gene was 84.8% and G was especially preferred in this position.  相似文献   

12.
The gene for L-lactate dehydrogenase (LDH) (EC 1.1.1.27) of Thermus caldophilus GK24 was cloned in Escherichia coli using synthetic oligonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of the LDH was deduced from the nucleotide sequence. The deduced amino acid sequence agreed with the NH2-terminal and COOH-terminal sequences previously reported and the determined amino acid sequences of the peptides obtained from trypsin-digested T. caldophilus LDH. The LDH comprised 310 amino acid residues and its molecular mass was determined to be 32,808. On alignment of the whole amino acid sequences, the T. caldophilus LDH showed about 40% identity with the Bacillus stearothermophilus, Lactobacillus casei and dogfish muscle LDHs. The T. caldophilus LDH gene was expressed with the E. coli lac promoter in E. coli, which resulted in the production of the thermophilic LDH. The gene for the T. caldophilus LDH showed more than 40% identity with those for the human and mouse muscle LDHs on alignment of the whole nucleotide sequences. The G + C content of the coding region for the T. caldophilus LDH was 74.1%, which was higher than that of the chromosomal DNA (67.2%). The G + C contents in the first, second and third positions of the codons used were 77.7%, 48.1% and 95.5% respectively. The high G + C content in the third base caused extremely non-random codon usage in the LDH gene. About half (48.7%) the codons in the LDH gene started with G, and hence there were relatively high contents of Val, Ala, Glu and Gly in the LDH. The contents of Pro, Arg, Ala and Gly, which have high G + C contents in their codons, were also high. Rare codons with U or A as the third base were sometimes used to avoid the TCGA sequence, the recognition site for the restriction endonuclease, TaqI. Two TCGA sequences were found only in the sequence of CTCGAG (XhoI site) in the sequenced region of the T. caldophilus DNA. There were three segments with similar sequences in the two 5' non-coding regions, probably the promoter and ribosome-binding regions, of the genes for the T. caldophilus LDH and the Thermus thermophilus 3-isopropylmalate dehydrogenase.  相似文献   

13.
14.
赤麂线粒体全基因组的序列和结构   总被引:4,自引:0,他引:4  
提取赤麂细胞株总DNA,参照我们实验室已测定的同属动物小麂线粒体全基因组序列设计引物,PCR扩增、测序、拼接,获得赤麂线粒体全基因组序列并进行生物信息学分析。赤麂线粒体全基因组序列全长16354bp。定位了22个tRNA基因、2个rRNA基因、13个蛋白编码基因和1个D-loop区。赤麂与小麂及其它哺乳动物线粒体的基因组结构相同,它们的序列同源性都较高。  相似文献   

15.
The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans, has been determined. Its coding region is estimated to be 1,487 base pairs long, which is nearly identical to those reported for chloroplast 16S rRNA genes and is about 4% shorter than that of the Escherichia coli gene. The 16S rRNA sequence of A. nidulans has 83% homology with that of tobacco chloroplast and 74% homology with that of E. coli. Possible stem and loop structures of A. nidulans 16S rRNA sequences resemble more closely those of chloroplast 16S rRNAs than those of E. coli 16S rRNA. These observations support the endosymbiotic theory of chloroplast origin.  相似文献   

16.
The mitochondrial gene coding for the large ribosomal RNA (21S) has been isolated from a rho- clone of Saccharomyces cerevisiae. A DNA segment of about 5500 base pairs has been sequenced which included the totality of the sequence coding for the mature ribosomal RNA and the intron. The mature RNA sequence corresponds to a length of 3273 nucleotides. Despite the very low guanine-cytosine content (20.5%), many stretches of sequence are homologous to the corresponding Escherichia coli 23S ribosomal RNA. The sequence can be folded into a secondary structure according to the general models for prokaryotic and eukaryotic large ribosomal RNAs. Like the E.coli gene, the mitochondrial gene contains the sequences that look like the eukaryotic 5.8S and the chloroplastic 4.5S ribosomal RNAs. The 5' and 3' end regions show a complementarity over fourteen nucleotides.  相似文献   

17.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

18.
The nucleotide sequence of a 1.4-kilobase-pair fragment containing the Salmonella typhimurium LT2 glgC gene coding for ADPglucose synthetase was determined. The glgC structural gene contains 1,293 base pairs, having a coding capacity of 431 amino acids. The amino acid sequence deduced from the nucleotide sequence shows that the molecular weight of ADPglucose synthetase is 45,580. Previous results of the total amino acid composition analysis and amino acid sequencing (M. Lehmann and J. Preiss, J. Bacteriol. 143:120-127, 1980) of the first 27 amino acids from the N terminus agree with that deduced from nucleotide sequencing data. Comparison of the Escherichia coli K-12 and S. typhimurium LT2 ADPglucose synthetase shows that there is 80% homology in their nucleotide sequence and 90% homology in their deduced amino acid sequence. Moreover, the amino acid residues of the putative allosteric sites for the physiological activator fructose bisphosphate (amino acid residue 39) and inhibitor AMP (amino acid residue 114) are identical between the two enzymes. There is also extensive homology in the putative ADPglucose binding site. In both E. coli K-12 and S. typhimurium LT2, the first base of the translational start ATG of glgA overlaps with the third base TAA stop codon of the glgC gene.  相似文献   

19.
Analysis of the spc ribosomal protein operon of Thermus aquaticus   总被引:5,自引:0,他引:5  
The gene region of Thermus aquaticus corresponding to the distal portion of the S10 operon and to the 5'-portion of the Escherichia coli spc operon was cloned, using the E. coli gene for the ribosomal protein L5 as hybridization probe. The gene arrangement was found to be identical to E. coli, i.e. S17, L14, L24, L5, S14, S8 and L6. Stop and start regions of contiguous cistrons overlap, except for the S14-S8 intergenic region, whose size (67 bases) even exceeds the corresponding spacer regions in E. coli and Bacillus subtilis. A G + C content of 94% in third positions of codons was found in the ribosomal protein genes of T. aquaticus analyzed here. The stop codon of gene S17 (the last gene of the S10 operon in E. coli) and the start codon of gene L14 (the first gene of the spc operon in E. coli) overlap in T. aquaticus, thus leaving no space to accommodate an intergenic promoter preceding spc-operon-encoded genes in T. aquaticus. A possible promoter, localized within the S17 coding region, yielded only weak resistance (20 micrograms/ml) to chloramphenicol in E. coli and therefore could be largely excluded as the main promoter for spc-operon-encoded genes. We failed to detect a structure resembling the protein S8 translational repressor site, located at the beginning of the L5 gene in E. coli, in the corresponding region or any other region in the cloned T. aquaticus spc DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号