首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper has been found to play a key role in the physiology of methanotrophic micro‐organisms, and methane oxidation may critically depend on the availability of Cu. In natural environments, such as soils, sediments, peat bogs, and surface waters, the presence of natural organic matter (NOM) can control the bioavailability of Cu by forming strong metal complexes. To promote Cu acquisition, methanotrophs exude methanobactin, a ligand known to have a high affinity for Cu. In this study, the capability of methanobactin for Cu acquisition from NOM was investigated using humic acid (HA) as a model substance. The kinetics of ligand exchange between Cu–HA and methanobactin was observed by UV–vis spectroscopy, and the speciation of Cu bound to methanobactin was determined by size‐exclusion chromatography coupled to an ICP‐MS. The results showed that Cu was mobilized from HA by a fast ligand exchange reaction following a second‐order rate law with first‐order kinetics for both methanobactin and Cu–HA complexes. The reaction rates decreased with decreasing temperature. Equilibrium experiments indicated that methanobactin was not sorbed to HA and proved that methanobactin is competitive with HA for Cu binding by forming strong 1:1 Cu–methanobactin complexes. Consequently, our results demonstrate that methanobactin can efficiently acquire Cu in organic‐rich environments.  相似文献   

2.
The Biotic Ligand Model (BLM) attempts to predict metal toxicity to aquatic organisms on the basis of metal speciation and effects at the cell surface. Current versions of the BLM for silver and copper consider metal binding by inorganic ligands, dissolved organic matter (DOM) and also competition at the cell surface from calcium and protons (pH). Recent studies reported in the geochemical and ecotoxicological literature have indicated the importance of sulfide as a ligand, even in fully oxygenated aquatic systems. Speciation calculations for oxygenated waters do not currently include reduced sulfur as a ligand and as a consequence, no version of the BLM model has been published including reduced sulfur. This reflects the limitations on our knowledge regarding reduced sulfur in aquatic systems. In this paper we highlight the need to include reduced sulfur in the Biotic Ligand Model, with the interaction between silver and inorganic metal sulfides as a specific example. The geochemical importance of metal sulfides as ligands for silver and the effect of 'dissolved' metal sulfide and other ligands on metal toxicity and accumulation are described and reviewed. Recommendations are made for future work needed to incorporate sulfide ligands into the BLM's modeling framework.  相似文献   

3.
Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential.  相似文献   

4.
The biotic ligand modeling (BLM) approach has gained recent widespread interest among the scientific and regulatory communities because of its potential for developing ambient water quality criteria (AWQC), which are site-specific, and in performing aquatic risk assessment for metals. Currently, BLMs are used for predicting acute toxicity (96?h LC50 for fish) in any defined water chemistry. The conceptual framework of the BLM has a strong physiological basis because it considers that toxicity of metals occurs due to the binding of free metal ions at the physiologically active sites of action (biotic ligand, e.g., fish gill) on the aquatic organism, which can be characterized by conditional binding constants (log K) and densities (Bmax). At present, these models assume that only water chemistry variables such as competing cations (e.g., Na+, Ca2+, Mg2+, and H+), inorganic ligands (e.g., hydroxides, chlorides, carbonates), and organic ligands (dissolved organic matter) can influence the bioavailability of free metal ions and thereby the acute toxicity of metals. Current BLMs do not consider the effects of chronic history of the fish in modifying gill-metal binding characteristics and acute toxicity. Here, for Cu, Cd, and Zn, we review a number of recent studies on the rainbow trout that describe significant modifying effects of chronic acclimation to waterborne factors (hardness and chronic metal exposure) and dietary composition (metal and essential ion content) on gill metalbinding characteristics (on both log K and Bmax) and on acute toxicity. We conclude that the properties of gill-metal interaction and toxicological sensitivity appear to be dynamic rather than fixed, with important implications for further development of both acute and chronic BLMs. Now that the initial framework of the BLM has been established, future research needs a more integrative approach with additional emphasis on the dynamic properties of the biotic ligand to make it a successful tool for ecological risk assessment of metals in the natural environment.  相似文献   

5.
Fifteen freshwater samples containing significant concentrations of dissolved organic carbon-[DOC]-were titrated with copper under standardised conditions (pH 6 and 7), and concentrations of Cu(2+)-[Cu(2+)]-were measured with an ion-selective electrode. Measured values of [Cu(2+)], which were in the range 10(-11)-10(-5) moll(-1), were compared with those simulated using Humic Ion-Binding Models V and VI. It was assumed that copper speciation was controlled by the organic matter, represented by fulvic acid (FA), together with inorganic solution complexation (calculated with an inorganic speciation model). The models were calibrated by adjusting a single quantity, the concentration of FA. The optimised value-[FA](opt)-was that giving the best agreement, according to least squares, between measured and simulated [Cu(2+)]. The calculations took into account competition by other dissolved (filterable) metals (Mg, Al, Ca, Fe(II), Fe(III), Zn); in the case of Fe(III) it was assumed either that all the dissolved metal was truly in solution, or that the activity of Fe(3+) was controlled by equilibrium with Fe(OH)(3). The assumption about Fe(III) had relatively small effects on the fitting of Model V, but was significant for Model VI, because Model VI represents low-abundance, high-affinity binding sites in humic matter, which are sensitive to Fe(III) competition. Because of its inclusion of the high-affinity sites, Model VI provided better fits of the data than did Model V. Furthermore, Model VI with Fe(3+) activity controlled by Fe(OH)(3) gave smaller variation in the ratio of [FA](opt) to [DOC] than Model VI with all Fe(III) assumed to be in solution. The average [FA](opt)/[DOC] found from the Cu titrations was 1.30, which implies that 65% of the organic matter is 'active' with respect to metal binding. The average ratio of 1.30 is in reasonable agreement with ratios obtained by applying the model to field data sets for charge balance (1.22), Al speciation (1.56) and base titrations of Cu-amended waters (1.45). It is concluded that Model VI/Fe(OH)(3) provides the most reliable predictions of dissolved metal speciation in natural waters; at a total Cu concentration of 1 microM, the predicted concentration of Cu(2+) is expected to be correct to within a factor of 3.6 in 95% of cases.  相似文献   

6.
Histidine-containing peptide fragments of prion protein are efficient ligands to bind various transition metal ions and they have high selectivity in metal binding. The metal ion affinity follows the order: Pd(II)>Cu(II)>Ni(II)Zn(II)>Cd(II) approximately Co(II)>Mn(II). The high selectivity of metal binding is connected to the involvement of both imidazole and amide nitrogen atoms in metal binding for Pd(II), Cu(II) and Ni(II), while only the monodentate N(im)-coordination is possible with the other metal ions. The stoichiometry and binding mode of palladium(II) complexes show great variety depending on the metal ion to ligand ratio, pH and especially the presence of coordinating donor atoms in the side chains of peptide fragments. It is also clear from our data that the peptide fragments containing histidine outside the octarepeat (His96, His111 and His187) are more efficient ligands than the monomer peptide fragments of the octarepeat domain.  相似文献   

7.
The binding of Cd(II) and Zn(II) to human serum albumin (HSA) and dog serum albumin (DSA) has been studied by equilibrium dialysis and 113Cd(II)-NMR techniques at physiological pH. Scatchard analysis of the equilibrium dialysis data indicate the presence of at least two classes of binding sites for Cd(II) and Zn(II). On analysis of the high-affinity class of sites, HSA is shown to bind 2.08 +/- 0.09 (log K = 5.3 +/- 0.6) and 1.07 +/- 0.12 (log K = 6.4 +/- 0.8) moles of Cd(II) and Zn(II) per mole of protein, respectively. DSA bound 2.02 +/- 0.19 (log K = 5.1 +/- 0.8), and 1.06 +/- 0.15 (log K = 6.0 +/- 0.2) moles of Cd(II) and Zn(II) per mole of protein, respectively. Competition studies indicate the presence of one high-affinity Cd(II) site on both HSA and DSA that is not affected by Zn(II) or Cu(II), and one high-affinity Zn(II) site on both HSA and DSA that is not affected by Cd(II) or Cu(II). 113Cadmium-HSA spectra display three resonances corresponding to three different sites of complexation. In site I, Cd(II) is most probably coordinated to two or three histidyl residues, site II to one histidyl residue and three oxygen ligands (carboxylate), while for the most upfield site III, four oxygens are likely to be involved in the binding of the metal ion. The 113Cd(II)-DSA spectra display only two resonances corresponding to two different sites of complexation. The environment around Cd(II) at sites I and II on DSA is similar to sites I and II, respectively, on HSA. No additional resonances are observed in any of these experiments and in particular in the low field region where sulfur coordination occurs. Overall, our results are consistent with the proposal that the physiologically important high-affinity Zn(II) and Cd(II) binding sites of albumins are located not at the Cu(II)-specific NH2-terminal site, but at internal sites, involving mostly nitrogen and oxygen ligands and no sulphur ligand.  相似文献   

8.
Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.  相似文献   

9.
Metal ions like Cu(II) and Zn(II) are accumulated in Alzheimer's disease amyloid plaques. The amyloid-β (Aβ) peptide involved in the disease interacts with these metal ions at neutral pH via ligands provided by the N-terminal histidines and the N-terminus. The present study uses high-resolution NMR spectroscopy to monitor the residue-specific interactions of Cu(II) and Zn(II) with (15)N- and (13)C,(15)N-labeled Aβ(1-40) peptides at varying pH levels. At pH 7.4 both ions bind to the specific ligands, competing with one another. At pH 5.5 Cu(II) retains its specific histidine ligands, while Zn(II) seems to lack residue-specific interactions. The low pH mimics acidosis which is linked to inflammatory processes in vivo. The results suggest that the cell toxic effects of redox active Cu(II) binding to Aβ may be reversed by the protective activity of non-redox active Zn(II) binding to the same major binding site under non-acidic conditions. Under acidic conditions, the protective effect of Zn(II) may be decreased or changed, since Zn(II) is less able to compete with Cu(II) for the specific binding site on the Aβ peptide under these conditions.  相似文献   

10.
Trace metals in aquatic and soil systems exist in a number of different soluble and particulate forms that impact the effect of the metals on these ecosystems. Appropriate methods of sampling and analysis are required to accurately determine the low concentrations present. Although assessment of metals in many regulatory programs is based on data for total metal concentrations, such values rarely correlate with effects. Consequently, other means are needed for the prediction of risk. Bioavailability of metals depends on their speciation, whose importance was first established for copper in aquatic systems where the toxicity of metals is related to the activity of the free metal ion. Small concentrations of natural organic matter strongly complex metals ameliorating toxicity. Several electroanalytical techniques are available that allow the assessment of metal species. Recently, a modeling approach, the Biotic Ligand Model (BLM), has been applied to the prediction of acute toxicity. The model accounts for the effects of natural organic matter, pH, and hardness and is able to predict toxicity over several orders of magnitude of soluble metal concentration using only easily determined site parameters. Total metal concentrations in sediment cover several orders of magnitude with no distinction of sediments that cause effects and those that do not except at low total metal concentrations. Relating the metal concentration to the concentrations of sulfide and organic matter binding sites enables the sediments containing higher concentrations of metals to be divided into those that do and those that do not have adverse effects. It is essential that metal speciation be considered to realistically evaluate the potential of metals to pose risk.  相似文献   

11.
Nuclear receptor (NR) ligands occupy a pocket that lies within the core of the NR ligand-binding domain (LBD), and most NR LBDs lack obvious entry/exit routes upon the protein surface. Thus, significant NR conformational rearrangements must accompany ligand binding and release. The precise nature of these processes, however, remains poorly understood. Here, we utilize locally enhanced sampling (LES) molecular dynamics computer simulations to predict molecular motions of x-ray structures of thyroid hormone receptor (TR) LBDs and determine events that permit ligand escape. We find that the natural ligand 3,5,3'-triiodo-L-thyronine (T(3)) dissociates from the TRalpha1 LBD along three competing pathways generated through i), opening of helix (H) 12; ii), separation of H8 and H11 and the Omega-loop between H2 and H3; and iii), opening of H2 and H3, and the intervening beta-strand. Similar pathways are involved in dissociation of T(3) and the TRbeta-selective ligand GC24 from TRbeta; the TR agonist IH5 from the alpha- and beta-TR forms; and Triac from two natural human TRbeta mutants, A317T and A234T, but are detected with different frequencies in simulations performed with the different structures. Path I was previously suggested to represent a major pathway for NR ligand dissociation. We propose here that Paths II and III are also likely ligand escape routes for TRs and other NRs. We also propose that different escape paths are preferred in different situations, implying that it will be possible to design NR ligands that only associate stably with their cognate receptors in specific cellular contexts.  相似文献   

12.
Abstract

The biogeochemical behaviour of lead (Pb) in ecosystems greatly depends on its chemical species. Organic ligands strongly influence Pb species and mobility in soil solution. In the present study, two metal speciation models, Windermere Humic Aqueous Model (WHAM) and Visual Minteq are used to compute Pb speciation in nutrient solution in the presence and absence of organic ligands. The three organic ligands used include ethylenediamine tetraacetic acid (EDTA), citric acid (CA) and fulvic acid (FA). The results show that in the absence of organic ligands, Pb2+ is the dominant form under acidic conditions and Pb–OH under alkaline conditions. The presence of organic ligands strongly influences Pb speciation. EDTA is more effective than are CA and FA concerning its influence on Pb speciation due to high Pb binding capacity. The results also indicate that Pb binding capacity of organic ligands varies with solution pH.  相似文献   

13.
Cation-mediated cross-linking in natural organic matter: a review   总被引:2,自引:0,他引:2  
Interactions between cations and natural organic matter (NOM) are central for the stability of organic matter, formation of supramolecular NOM structure, formation of organo-mineral associations, soil aggregation and binding of organic contaminants. The effect of multivalent cations on environmental functionalities of NOM strongly depends on the relative importance between intramolecular complexation and intermolecular cross-linking, the degree of which will be determined by the spatial arrangement of the hydrophilic functional groups in NOM. This literature review seeks to evaluate the current state of the art regarding the relevance of intermolecular cross-links via bridges of multivalent cations. Cross-linking has been suggested to explain among others aggregate stability, retarded dissolved organic matter release, reduced organic matter (OM) solubility as well as increase in degree and nonlinearity of sorption or organic chemicals to NOM. Although the cross-linking mechanism has been suggested in numerous studies, it has not yet been verified directly. The dynamics of the intermolecular cross-links, their persistence as well as their interplay with OM and their influence on stability and bioavailability of organic chemicals is up to now unknown. The major challenge in this context is the development of a suitable combination of experimental and instrumental techniques and relating the results to molecular and physicochemical models on the basis of targeted combination of spectroscopic, molecular modelling and thermoanalytical methods.  相似文献   

14.
The study on the binding ability of tested ligands have shown that insertion of two dehydro-amino acid residues into peptide sequences makes them more effective in metal ion binding than ligands with one dehydro-amino acid residue. The ligand with two Z(Delta)Phe residue form more stable complexes than his analogues with one Z(Delta)Phe residue. Interesting is this that position of Z(Delta)Phe residue in peptide chain have impact on Cu(II)-complexes formation.  相似文献   

15.
Free-living nitrogen-fixing bacteria in soils need to tightly regulate their uptake of metals in order to acquire essential metals (such as the nitrogenase metal cofactors Fe, Mo and V) while excluding toxic ones (such as W). They need to do this in a soil environment where metal speciation, and thus metal bioavailability, is dependent on a variety of factors such as organic matter content, mineralogical composition, and pH. Azotobacter vinelandii, a ubiquitous gram-negative soil diazotroph, excretes in its external medium catechol compounds, previously identified as siderophores, that bind a variety of metals in addition to iron. At low concentrations, complexes of essential metals (Fe, Mo, V) with siderophores are taken up by the bacteria through specialized transport systems. The specificity and regulation of these transport systems are such that siderophore binding of excess Mo, V or W effectively detoxifies these metals at high concentrations. In the topsoil (leaf litter layer), where metals are primarily bound to plant-derived organic matter, siderophores extract essential metals from natural ligands and deliver them to the bacteria. This process appears to be a key component of a mutualistic relationship between trees and soil diazotrophs, where tree-produced leaf litter provides a living environment rich in organic matter and micronutrients for nitrogen-fixing bacteria, which in turn supply new nitrogen to the ecosystem.  相似文献   

16.
CD and EPR were used to characterize interactions of oxindole-Schiff base copper(II) complexes with human serum albumin (HSA). These imine ligands form very stable complexes with copper, and can efficiently compete for this metal ion towards the specific N-terminal binding site of the protein, consisting of the amino acid sequence Asp-Ala-His. Relative stability constants for the corresponding complexes were estimated from CD data, using the protein as competitive ligand, with values of log KCuL in the range 15.7-18.1, very close to that of [Cu(HSA)] itself, with log KCuHSA 16.2. Some of the complexes are also able to interfere in the α-helix structure of the protein, while others seem not to affect it. EPR spectra corroborate those results, indicating at least two different metal species in solution, depending on the imine ligand. Oxidative damage to the protein after incubation with these copper(II) complexes, particularly in the presence of hydrogen peroxide, was monitored by carbonyl groups formation, and was observed to be more severe when conformational features of the protein were modified. Complementary EPR spin-trapping data indicated significant formation of hydroxyl and carbon centered radicals, consistent with an oxidative mechanism. Theoretical calculations at density functional theory (DFT) level were employed to evaluate Cu(II)-L binding energies, L → Cu(II) donation, and Cu(II) → L back-donation, by considering the Schiff bases and the N-terminal site of HSA as ligands. These results complement previous studies on cytotoxicity, nuclease and pro-apoptotic properties of this kind of copper(II) complexes, providing additional information about their possibilities of transport and disposition in blood plasma.  相似文献   

17.
This research investigated the potential role of siderophores in aerobic microbial Fe acquisition from natural organic matter (NOM; XAD-8 isolate and reverse osmosis concentrate pre- and post-Chelex® treatment) through the use of a siderophore-producing Pseudomonas mendocina wild type (WT) bacterium and an engineered mutant (Mt) that was incapable of siderophore production. NOM had complex effects on microbial growth under Fe-limited conditions as measured by optical density, most likely because of the presence of other toxic (trace) metals such as Al, NOM binding interference with additional trace metal nutrients, and/or biofilm development. However, a bioassay for cellular Fe status showed that both WT and Mt readily acquired Fe naturally associated with NOM. Thus, while siderophores may be useful for Fe acquisition from NOM by P. mendocina, they do not appear to be essential for this process.  相似文献   

18.
SUMMARY. 1. Copper(II) complexation in the eutrophic. humus-rich Lake Tjeukemeer was measured fortnightly for several years by copper titration (Ion Selective Electrode) and by copper solubilization. Additionally, the copper speciation during titration was followed by ultrafiltration.
2. The Tjeukemeer showed high ligand concentrations able to complex up to 8.5X10-5 M Cu.
3. Scatchard plots and affinity spectra of the titration data allowed the discrimination of at least three different binding sites. In Scatchard plots log K values ranged from 5 to 9, in affinity spectra from 4.5 to 8.
4. The highest log K values coincided with relatively low humus concentrations and blooms of algae, mainly Cyanobacteria.
5. The ultrafiltration experiments indicated that relatively small size fractions (<10 nm) have the highest copper binding affinity.  相似文献   

19.
Extended X-ray absorption fine structure (EXAFS) studies of Cu(II) (oxidized), Cu(I) (reduced), Ni(II) and Co(II) stellacyanin from Rhus vernicifera are reported. For Cu(II) stellacyanin, the coordination by three close ligands, viz. 2 N and 1 S, with the presence of smaller shells pointing to imidazole coordination, indicates similarities with the coordination in other so-called type 1 or 'blue'-copper proteins. Upon reduction, slightly longer ligand distances and an additional sulphur ligand are found. Ni(II) and Co(II) stellacyanin resemble Cu(I) and Cu(II) stellacyanin, respectively, in ligand distances, but have a tendency for three rather than two N (or O) ligands in the first shell. The results are compared with the three-dimensional model derived from 1H-NMR relaxation measurements for Co(II) stellacyanin, and are consistent with the proposal that apart from the three close ligands found in all blue-copper proteins, a sulphur from a disulphide bridge and the amide oxygen from an asparagine residue come to within coordinating distance of the metal in stellacyanin.  相似文献   

20.
Abstract

The copper complexing ability of the exudates produced during the exponential growth phase by Skeletonema costatum has been investigated by a ligand-competition technique involving copper sorption onto C-18 Sep-Pak cartridges. Two ligands with different affinity for copper were required for the best fit of the copper complexation data in seawater with and without exudates: a strong ligand with a log K close to 13 and a weaker ligand with a log K close to 9. The culture increased both L1 and L2 ligand concentrations, already present in seawater, by a factor close to 4 after the first 72 hours of growth. The presence of class 1 stronger ligands in copper binding organics produced by the diatom is discussed in relation to natural copper speciation in the sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号