首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Water quality characteristics affecting toxicity of metals to aquatic life include pH, inorganic and organic ligands (negatively charged ions and molecules), and water hardness. Ligands control the ability of natural waters to bind metals which could adversely affect aquatic life. Bioavailability of metals in natural waters is primarily controlled by alkalinity. Hardness does not affect metal complexation but can reduce acute toxicity through antagonistic mechanisms. In most natural waters, concentrations of alkalinity and hardness are similar, but they may be very different in some waters.

Most toxicity studies have not distinguished between reduced toxicity resulting from effects of hardness and that resulting from complexation of metals by ligands. A series of acute and long-term experiments were conducted to assess these relationships while exposing rainbow trout (Oncorhynchus mykiss) to cadmium (Cd) in waters of low alkalinity (30 mg L?1) and hardnesses of 400, 200, and 50 mg L?1 adjusted with magnesium sulfate (MgSO4). These tests did not show a strong antagonistic influence of Mg hardness on Cd toxicity. At Mg hardnesses of 50, 200, and 400 mg L?1, 96-h LC50s were 3.02, 6.12, and 5.70 μg Cd L?1, differing by a factor of only 1.8. Similarly, chronic values derived from 100-day experiments in waters with the same range of hardness were 1.47, 3.57, and 3.64 μg L?1, respectively. With an eight-fold difference in Mg hardness, chronic values differed by a factor of only 2.5. Antagonistic properties of hardness are primarily controlled by Ca with Mg playing a minor role. The long-term role of Ca in reducing metal toxicity will require further investigation.  相似文献   

2.
In tropical Australian freshwaters, uranium (U) is of potential ecotoxicological concern, largely as a consequence of mining activities. Although the toxicity of uranium to Australian freshwater biota is comprehensive, by world standards, few data are available on the effects of physicochemical variables, such as hardness, alkalinity, pH and organic matter, on uranium speciation and bioavailability. This study determined the individual effects of water hardness (6.6, 165 and 330 mg l-1 as CaCO3) and alkalinity (4.0 and 102 mg l-1 as CaCO3), at a constant pH (6.0), on the toxicity (96 h population growth) of uranium to Hydra viridissima (green hydra). A 50-fold increase in hardness (Ca and Mg concentration) resulted in a 92% (two-fold) decrease in the toxicity of uranium to H. viridissima [i.e . an increase in the EC50 value and 95% confidence interval from 114 (107-121) to 219 (192-246) µg l-1]. Conversely, at a constant hardness (165 mg l-1 as CaCO3), the toxicity of uranium to H. viridissima was not significantly (P > 0.05) affected by a 25-fold increase in alkalinity (carbonate concentration) [i.e. EC50 values of 177 (166-188) and 171 (150-192) µg l-1 at 4.0 and 102 mg l-1 as CaCO3, respectively]. A knowledge of the relationship between water chemistry variables, including hardness and alkalinity, and uranium toxicity is useful for predicting the potential ecological detriment in aquatic systems, and can be used to relax national water quality guidelines on a site-specific basis.  相似文献   

3.
In tropical Australian freshwaters, uranium (U) is of potential ecotoxicological concern, largely as a consequence of mining activities. Although the toxicity of uranium to Australian freshwater biota is comprehensive, by world standards, few data are available on the effects of physicochemical variables, such as hardness, alkalinity, pH and organic matter, on uranium speciation and bioavailability. This study determined the individual effects of water hardness (6.6, 165 and 330 mg l-1 as CaCO3) and alkalinity (4.0 and 102 mg l-1 as CaCO3), at a constant pH (6.0), on the toxicity (96 h population growth) of uranium to Hydra viridissima (green hydra). A 50-fold increase in hardness (Ca and Mg concentration) resulted in a 92% (two-fold) decrease in the toxicity of uranium to H. viridissima [i.e. an increase in the EC50 value and 95% confidence interval from 114 (107-121) to 219 (192-246) µg l-1]. Conversely, at a constant hardness (165 mg l-1 as CaCO3), the toxicity of uranium to H. viridissima was not significantly (P > 0.05) affected by a 25-fold increase in alkalinity (carbonate concentration) [i.e. EC50 values of 177 (166-188) and 171 (150-192) µg l-1 at 4.0 and 102 mg l-1 as CaCO3, respectively]. A knowledge of the relationship between water chemistry variables, including hardness and alkalinity, and uranium toxicity is useful for predicting the potential ecological detriment in aquatic systems, and can be used to relax national water quality guidelines on a site-specific basis.  相似文献   

4.
Copper-silver (Cu-Ag) ionization has effectively controlled Legionella spp. in the hot water systems of numerous hospitals. However, it was ineffective at controlling Legionella in one Ohio hospital despite the confirmation of adequate total concentrations of copper and silver ions. The pH of the water at this hospital was found to be 8.5 to 9.0. The purpose of this study was to investigate the impact of pH and other water quality parameters, including alkalinity (HCO3-), hardness (Ca2+ and Mg2+), and amount of dissolved organic carbon (DOC), on the control of Legionella by Cu-Ag ionization. Initial concentrations of Legionella and copper and silver ions used in batch experiments were 3 x 10(6) CFU/ml and 0.4 and 0.08 mg/liter, respectively. Changes in bicarbonate ion concentration (50, 100, and 150 mg/liter), water hardness (Ca2+ at 50 and 100 mg/liter; Mg2+ at 40 and 80 mg/liter), and level of DOC (0.5 and 2 mg/liter) had no significant impact on the efficacy of copper and silver ions in killing Legionella at a neutral pH. When the pH was elevated to 9 in these experiments, copper ions achieved only a 10-fold reduction in the number of Legionella organisms in 24 h, compared to a millionfold decrease at pH 7.0. Silver ions were able to achieve a millionfold reduction in 24 h at all ranges of water quality parameters tested. Precipitation of insoluble copper complexes was observed at a pH above 6.0. These results suggest that pH may be an important factor in the efficacy of copper-silver ionization in controlling Legionella in water systems.  相似文献   

5.
AIMS: This study investigated the influence of water chemistry on copper solvation (cuprosolvency) by pure culture biofilms of heterotrophic bacteria isolated from copper plumbing. METHODS AND RESULTS: Heterotrophic bacteria isolated from copper plumbing biofilms including Acidovorax delafieldii, Flavobacterium sp., Corynebacterium sp., Pseudomonas sp. and Stenotrophomonas maltophilia were used in laboratory coupon experiments to assess their potential for cuprosolvency. Sterile copper coupons were exposed to pure cultures of bacteria to allow biofilm formation and suspended in drinking waters with different chemical compositions. Sterile coupons not exposed to bacteria were used as controls. After 5 days of incubation, copper release and biofilm accumulation was quantified. The results demonstrated that cuprosolvency in the control experiments was influenced by water pH, total organic carbon (TOC) and conductivity. Cuprosolvency in the presence of biofilms correlated with the chemical composition of the water supplies particularly pH, Langeliers Index, chloride, alkalinity, TOC and soluble phosphate concentrations. CONCLUSIONS: The results suggest water quality may influence cuprosolvency by biofilms present within copper plumbing pipes. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for water chemistry to influence cuprosolvency by biofilms may contribute to the sporadic nature of copper corrosion problems in distribution systems.  相似文献   

6.
Husbandry and health of the African clawed frog, Xenopus laevis, greatly influences the quality of oocytes produced. One factor affecting oocyte quality is the water conditions in which females are maintained. Dechlorination and adequate salt concentration are known to affect oocytes, but water hardness has not been considered an important factor in Xenopus husbandry by the research community. We found that, when females were kept in soft water or water with marine salts alone, even when it was cooled to 17 to 18 degrees C, the quality of oocytes decreased; only 20 to 25% of resulting embryos developed to tailbud stages. Survival and normal development of embryos increased significantly within one month of addition to the laboratory housing water of salts that mimic conditions in African Rift Valley lakes. These salts greatly increased water hardness; development of embryos to tailbud stages remained high (50 to 70% on average) for more than a year after their addition to the water housing females. Water from South African ponds where X. laevis are collected, and from wells used by the major suppliers of X. laevis, also was moderately to very hard. Our results suggest that X. laevis is naturally adapted to hard water, and indicate that increasing general hardness during laboratory housing is more important for oocyte quality and embryo development than is increasing carbonate hardness (alkalinity) in the water used to house females.  相似文献   

7.
Exposure of brown trout, Salmo trutta , to zinc under continuous flow conditions over 96 h showed that both water hardness and pH exert major influences on the toxicity of the metal. 96-h LC50 values for total zinc ranged from <0.14mg 1−1 in alkaline soft water (pH 8; lOmg 1−1 as CaCO3) to 3.20 mg 1−1 in acidic hard water (pH 5; 204 mg 1−1 as CaCO3). A variable reduction in zinc toxicity in hard water compared with soft water over the pH range 4–9 was attributed to high external calcium. Zinc toxicity was positively correlated with decreasing acidity over the pH range 5–7, the metal being most toxic at pH 8–9 where metal complexes predominate. Below pH 5 metal toxicity also increased, irrespective of hardness. Water hardness and pH interacted with zinc toxicity in a complex manner, apparently dependent on physical and chemical transformations of the metal, and as changes in uptake. detoxification and excretion by the fish.  相似文献   

8.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the soft water stream.  相似文献   

9.
Abstract

The aim of this study was to determine by static bioassay whether water hardness affects the toxicity of Zn and Cu to a fish, Gambusia holbrooki Girard, 1859. The acute toxicity of selected heavy metals to G. holbrooki was determined in soft, hard and very hard water (25, 125 and 350 mg L?1 as CaCO3). Results showed that water hardness had a significant effect on Cu and on Zn toxicity on fish. Toxicity of Cu and of Zn increased with decreasing water hardness. The 96 hours LC50 values for G. holbrooki were higher in the hard and very hard water compared with soft water. Water hardness had a much smaller effect upon the acute toxicity of Cu than that of Zn. It was observed that the 96 hours LC50 for Cu at the soft, hard and very hard water was found to be 0.017, 0.17 and 0.65 mg L?1, respectively, while the 96 hours LC50 for Zn at the soft, hard and very hard water was found to be 0.46, 48.1 and 121.6 mg L?1, respectively.  相似文献   

10.
Abstract

Bioassays were carried out in the culture media for Vibrio-qinghaiensis sp.Nov.-Q67 and the influences of alkalinity and different concentrations of chloride, ethylene diamine tetraacetic acid (EDTA) and natural derived fulvic acid (FA) on the labile concentration and toxicity of Cu were investigated. The labile concentration of Cu was obtained by differential pulse anodic stripping voltammetry with a double acidification method (DAM-DPASV). Changes in water alkalinity and chloride concentrations did not affect the labile concentration of Cu, but increases of alkalinity and concentrations of chloride reduced the toxicity on Q67. In the presence of EDTA and FA, both labile concentration of Cu and toxicity were reduced. By excluding Cu-carbonate complexes and Cu-chloride from labile concentration, a bioavailable concentration of Cu (or [Cu*]) was obtained and used to predict the acute toxicity of Cu on Q67. For natural waters, the labile concentration of Cu was measured by DAM-DPASV and [Cu*] was calculated by a MINTEQ A2 software based on composition of waters. This procedure was tested for Guanting Reservoir waters by spiking different concentration Cu. The results showed that [Cu*] was a good indicator for Cu toxicity and could be used in field conditions.  相似文献   

11.
The present study examines the influence of Ca2+ as (CaSO4), dissolved organic carbon (DOC) and pH on chronic water-borne lead (Pb) toxicity to the larval fathead minnow (Pimephales promelas) under flow-through conditions. The 30 day LC50 for low hardness basic test water (19 mg CaCO3 L(-1)) was 39 (range: 27-51) microg dissolved Pb L(-1) and was greatly increased by increasing concentrations of CaSO4 and DOC to as much as 1903 (range: 1812-1992) mug dissolved Pb L(-1). Both reduced and increased pH (6.7 and 8.1, respectively) compared to control pH of 7.4 appeared to increase Pb toxicity substantially. Whole body Pb accumulation did not reflect water chemistry and thus exhibited no correlation with Pb induced mortality. One possible explanation for this lack of correlation is that mortality occurred predominantly during the first 4-6 days of exposure, whereas Pb accumulation was determined in surviving fish at the end of 30 days of exposure. Chronic Pb exposure resulted in a general iono-regulatory disturbance affecting K+, Na+ and Ca2+ homeostasis. However, recovery of Na+ and K+ levels and reversal of effects on Ca2+ homeostasis during continued exposure strongly suggest fathead minnow can acclimate to Pb. The gills accumulate the highest Pb concentrations during chronic exposure but the skeleton contains the largest mass of Pb by contributing up to approximately 80% of whole body Pb. In conclusion, water chemistry characteristics like Ca2+ and DOC should be considered for chronic water quality criteria.  相似文献   

12.
We investigated the bioaccumulation and acute toxicity (48 h or 96 h) of Ni in four freshwater invertebrate species in two waters with hardness of 40 (soft water) and 140 mg L− 1 as CaCO3 (hard water). Sensitivity order (most to least) was Lymnaea stagnalis > Daphnia pulex > Lumbriculus variegatus > Chironomus riparius. In all cases water hardness was protective against acute Ni toxicity with LC50 values 3–3.5 × higher in the hard water vs. soft water. In addition, higher water hardness significantly reduced Ni bioaccumulation in these organisms suggesting that competition by Ca and Mg for uptake at the biotic ligand may contribute to higher metal resistance. CBR50 values (Critical Body Residues) were less dependent on water chemistry (i.e. more consistent) than LC50 values within and across species by ~ 2 fold. These data support one of the main advantages of the Tissue Residue Approach (TRA) where tissue concentrations are generally less variable than exposure concentrations with respect to toxicity. Whole body Ni bioaccumulation followed Michaelis–Menten kinetics in all organisms, with greater hardness tending to decrease Bmax with no consistent effect on Kd. Across species, acute Ni LC50 values tended to increase with both Kd and Bmax values — i.e. more sensitive species exhibited higher binding affinity and lower binding capacity for Ni, but there was no correlation with body size. With respect to biotic ligand modeling, log KNiBL values derived from Ni bioaccumulation correlated well with log KNiBL values derived from toxicity testing. Both whole body Na and Mg levels were disturbed, suggesting that disruption of ionoregulatory homeostasis is a mechanism of acute Ni toxicity. In L. stagnalis, Na depletion was a more sensitive endpoint than mortality, however, the opposite was true for the other organisms. This is the first study to show the relationship between Na and Ni.  相似文献   

13.
Copper-silver (Cu-Ag) ionization has effectively controlled Legionella spp. in the hot water systems of numerous hospitals. However, it was ineffective at controlling Legionella in one Ohio hospital despite the confirmation of adequate total concentrations of copper and silver ions. The pH of the water at this hospital was found to be 8.5 to 9.0. The purpose of this study was to investigate the impact of pH and other water quality parameters, including alkalinity (HCO3), hardness (Ca2+ and Mg2+), and amount of dissolved organic carbon (DOC), on the control of Legionella by Cu-Ag ionization. Initial concentrations of Legionella and copper and silver ions used in batch experiments were 3 × 106 CFU/ml and 0.4 and 0.08 mg/liter, respectively. Changes in bicarbonate ion concentration (50, 100, and 150 mg/liter), water hardness (Ca2+ at 50 and 100 mg/liter; Mg2+ at 40 and 80 mg/liter), and level of DOC (0.5 and 2 mg/liter) had no significant impact on the efficacy of copper and silver ions in killing Legionella at a neutral pH. When the pH was elevated to 9 in these experiments, copper ions achieved only a 10-fold reduction in the number of Legionella organisms in 24 h, compared to a millionfold decrease at pH 7.0. Silver ions were able to achieve a millionfold reduction in 24 h at all ranges of water quality parameters tested. Precipitation of insoluble copper complexes was observed at a pH above 6.0. These results suggest that pH may be an important factor in the efficacy of copper-silver ionization in controlling Legionella in water systems.  相似文献   

14.
It may be hypothesised that as the bioavailable background concentration of an essential metal increases (within natural limits), the natural tolerance (to the metal) of the acclimated/adapted organisms and communities will increase. In this study the influence of acclimation to different copper concentrations on the sensitivity of the freshwater cladoceran Daphnia magna Straus was investigated. D. magna was acclimated over three generations to environmentally relevant copper concentrations ranging from 0.5 to 100 microg Cu/l (copper activity: 7.18 x 10(-15) to 3700 x 10(-12) M Cu2+). A modified standard test medium was used as culture and test medium. Medium modifications were: reduced hardness (lowered to 180 mg CaCO3/l) and addition of Aldrich humic acid at a concentration of 5 mg DOC/l (instead of EDTA). The effects of acclimation on these organisms were monitored using acute mortality assays and long-term assays in which life table parameters, copper body concentrations and energy reserves were used as test endpoints. Our results showed a two-fold increase in acute copper tolerance with increasing acclimation concentration for second and third generation organisms. Copper acclimation concentrations up to 35 microg Cu/l (80 pM Cu2+) did not affect the net reproduction and the intrinsic growth rate. The energy reserves of the acclimated daphnids revealed an Optimal Concentration range (OCEE) and concentrations between 5 and 12 microg Cu/l (0.5-4.1 pM Cu2+) and 1 and 35 microg Cu/l (0.023-80 pM Cu2+) seemed to be optimal for first and third generation daphnids, respectively. Lower and higher copper concentrations resulted in deficiency and toxicity responses. It was also demonstrated that up to 35 microg Cu/l, third generation daphnids were able to regulate their total copper body concentration. These results clearly indicate that bioavailable background copper concentrations present in culture media have to be considered in the evaluation of toxicity test results, especially when the toxicity data are used for water quality guideline derivation and/or ecological risk assessment for metals.  相似文献   

15.
This study investigated the short-term (3 h) cadmium binding characteristics of the gills, as well as the influence of various water chemistry variables [calcium, magnesium, sodium, pH, alkalinity and dissolved organic carbon (DOC)] on short-term gill accumulation and acute toxicity of cadmium in juvenile freshwater rainbow trout. The cadmium binding pattern revealed two types of cadmium binding sites in the gill: (i) saturable high affinity sites operating at a low range of waterborne cadmium concentration, and (ii) non-saturable low affinity sites operating at a higher range of cadmium concentration. Among the water chemistry variables tested, only calcium and DOC significantly reduced both gill accumulation and toxicity of cadmium. Interestingly, alkalinity (15-90 mg L(-1) as CaCO(3)) did not influence the gill cadmium accumulation but a significant increase in toxicity was recorded at a higher alkalinity level (90 mg L(-1)). Affinity constants (log K) for binding of competing cations (Cd(2+) and Ca(2+)) to the biotic ligand and for binding of Cd(2+) to DOC were derived separately from the 3 h gill binding tests and the 96 h toxicity tests. In general, the values agreed well, indicating that both tests targeted the same population of high affinity binding sites, which are likely Ca(2+) uptake sites on the gills. These parameters were then incorporated into a geochemical speciation model (MINEQL+) to develop a biotic ligand model for predicting acute toxicity of cadmium in trout. The model predictions exhibited a good fit with the measured toxicity data except for high alkalinity and pH.  相似文献   

16.
Current scientific consensus is that inshore regions of the central and southern Great Barrier Reef, Australia, are at risk of impacts from increased nutrient (as well as sediment and pesticide) loads delivered to Reef waters. Increases in the discharge of water quality contaminants to the Reef are largely a consequence of the expansion of agricultural practices in northern Queensland catchments following European settlement in the 1850s. In particular, the presence of elevated chlorophyll a and nutrient concentrations in many parts of the inshore Great Barrier Reef together with intense and extensive phytoplankton blooms following the discharge of nutrient-rich river flood waters suggest that the central and southern inshore area of the Great Barrier Reef is likely to be significantly impacted by elevated nutrient loads. The biological consequences of this are not fully quantified, but are likely to include changes in reef condition including hard and soft coral biodiversity, macroalgal abundance, hard coral cover and coral recruitment, as well as change in seagrass distribution and tissue nutrient status. Contemporary government policy is centered around promotion and funding of better catchment management practices to minimize the loss of catchment nutrients (both applied and natural) and the maintenance of a Reef wide water quality and ecosystem monitoring program. The monitoring program is designed to assess trends in uptake of management practice improvements and their associated impacts on water quality and ecosystem status over the next 10 years. A draft set of quantitative criteria to assess the eutrophication status of Great Barrier Reef waters is outlined for further discussion and refinement.  相似文献   

17.
The main objective of this study was to characterize the individual effects of water chemistry (Ca(2+), Na(+), dissolved organic matter (DOM), pH, alkalinity) on the rapid binding of copper to the gill surface of rainbow trout using an in vitro gill binding assay. In this assay, individual gill arches were exposed for 5 min to (64)Cu labelled copper solutions ranging from 0.02 to 0.16 microM in water chemistries reflecting the full range of fresh water values for the Great Lakes. The gills displayed saturable Cu binding within this Cu range but gill-Cu binding was completely unaffected over the full range of calcium, sodium and alkalinity concentrations used. Only low pH (pH 4.0) and commercial DOM (Aldrich humic acid at > or =3 mgC/l) altered copper binding to rainbow trout gills in vitro. These findings were consistent with the results of geochemical modelling of our water chemistry (using MINEQL+, Version 4.5) which showed that H(+) and DOM affected the free cupric ion concentration. However, DOM (up to 80 mgC/l) was only able to reduce Cu on the gills by 50%. We hypothesize that in the range of 0.02-0.16 microM Cu there are two high affinity Cu binding sites on the gills, one having a substantially higher affinity for copper than DOM. The absence of a calcium effect on gill copper binding was in accord with in vivo evidence that calcium primarily acts to alter the physiology of the gill binding sites through acclimatory processes, rather than through competitive interactions. It was a surprise that water chemistry parameters influence rapid gill-metal binding in a manner different to their influence on acute toxicity and different from the effects on long-term binding reported in other studies. Currently, the biotic ligand model uses the rapid increase of gill copper (believed to reflect binding to the physiologically active receptor sites) to model gill binding characteristics. The distinction between rapid surface binding and metal uptake obviously plays an important role in determining the toxic effects of copper, especially when regulators need to predict the modifying effects of water chemistry.  相似文献   

18.
The toxicity of cadmium and zinc at concentrations ranging from 0.1 to 10000 microg/l was investigated with cercariae of Diplostomum spathaceum at three temperatures (12, 20, 25 degrees C) and three levels of water hardness (distilled water, soft water, hard water). Under most environmental conditions survival of cercariae was reduced by increasing metal concentration. Increasing water hardness and decreasing water temperature caused an increase in the survival of both control and metal exposed cercariae. However, with decreasing temperature increased survival of metal-exposed cercariae above the control occurred at a number of low metal concentrations. Differences in the relative toxicity of cadmium and zinc to cercariae was dependent on the environmental conditions of exposure. The two heavy metals demonstrated little toxicity to cercariae during the period of maximum cercarial infectivity (0-5 h).The mechanisms of metal toxicity and their effects on cercarial survival are discussed.  相似文献   

19.
Elevated major ions (or salinity) are recognised as being a key contributor to the toxicity of many mine waste waters but the complex interactions between the major ions and large inter-species variability in response to salinity, make it difficult to relate toxicity to causal factors. This study aimed to determine if the toxicity of a typical saline seepage water was solely due to its major ion constituents; and determine which major ions were the leading contributors to the toxicity. Standardised toxicity tests using two tropical freshwater species Chlorella sp. (alga) and Moinodaphnia macleayi (cladoceran) were used to compare the toxicity of 1) mine and synthetic seepage water; 2) key major ions (e.g. Na, Cl, SO4 and HCO3); 3) synthetic seepage water that were modified by excluding key major ions. For Chlorella sp., the toxicity of the seepage water was not solely due to its major ion concentrations because there were differences in effects caused by the mine seepage and synthetic seepage. However, for M. macleayi this hypothesis was supported because similar effects caused by mine seepage and synthetic seepage. Sulfate was identified as a major ion that could predict the toxicity of the synthetic waters, which might be expected as it was the dominant major ion in the seepage water. However, sulfate was not the primary cause of toxicity in the seepage water and electrical conductivity was a better predictor of effects. Ultimately, the results show that specific major ions do not clearly drive the toxicity of saline seepage waters and the effects are probably due to the electrical conductivity of the mine waste waters.  相似文献   

20.
Hamsher  S. E.  & Vis  M. L. 《Journal of phycology》2003,39(S1):20-21
In the Appalachian region, numerous streams are polluted with acid mine drainage (AMD). These waters are sulfate-rich with elevated amounts of total acidity, low pH, and high levels of dissolved metals. Biotic multimetric indices, such as the Periphyton Index of Biotic Integrity (PIBI) have been employed to determine water quality across a variety of environmental conditions and may prove useful for AMD impacts. This study was initiated (1) to evaluate the PIBI for distinguishing AMD impact in streams and (2) to examine whether PIBI scores are impacted by seasonal differences. Twelve AMD and three reference streams were sampled for periphyton in June, August, and October. Water chemistry was collected at least once during the sampling period. Preliminary results showed that PIBI scores were significantly different (p<0.05) among the seasons. In addition, the seasonal trends in PIBI scores among streams were not consistent. The PIBI scores were correlated with six water chemistry variables in August and with at least one variable indicative of AMD in each season sampled. PCA and UPGMA analyses of water chemistry data grouped the streams into five categories: (1) moderately impacted AMD streams with lower total dissolved solids, sulfate, total aluminum, and alkalinity, and higher sulfate; (2) AMD streams with higher alkalinity and lower total aluminum; (3) AMD streams with lower alkalinity and higher total aluminum; (4) reference streams and (5) an outlier reference stream affected by nutrients. Relationships between the groups based on water chemistry and the groups derived from the PIBI will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号