首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2nd year of a 2-year study of the fate of pentachlorophenol in outdoor artificial streams focused on details of microbial degradation by a combination of in situ and laboratory measurements. Replicate streams were dosed continuously at pentachlorophenol concentrations of 0, 48, and 144 micrograms/L, respectively, for an 88-d period during the summer of 1983. Pentachlorophenol was degraded both aerobically and anaerobically. Aerobic degradation was more rapid than anaerobic degradation. Mineralization of pentachlorophenol was concommitant with pentachlorophenol disappearance under aerobic conditions, but lagged behind loss of the parent molecule under anaerobic conditions. Biodegradation in the streams, or in specific stream compartments such as the sediment or water column, was characterized by an adaptation period (3-5 weeks for the stream as a whole, and reproducible from the previous year), which was inversely dependent on the concentration of pentachlorophenol and microbial biomass. The adaptation in the streams could be attributed to the time necessary for selective enrichment of an initially low population of pentachlorophenol degraders on surface compartments. The extent of biodegradation in the streams (percent loss of initial concentration of pentachlorophenol) increased with increasing pentachlorophenol input, which was explicable by an increase in the pentachlorophenol degrader population with increasing pentachlorophenol concentration. The sediment zone most significant to overall pentachlorophenol biodegradation was the top 0.5- to 1-cm layer as shown by pentachlorophenol migration rates and depth profiles of degrader density within the sediment. Pentachlorophenol profiles in sediment cores taken during and after the adaptation period for degradation showed that diffusion of pentachlorophenol into the sediment was rate limiting to degradation in this compartment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Adenosine-triphosphate phosphoribosyltransferase from Escherichia coli is inhibited by dicoumarol and pentachlorophenol in competition with ATP. Ki was approximately 60 muM for dicoumarol and 50 muM for pentachlorophenol. Carbonylcyanide m-chlorphenylhydrazine did not seem to have any kinetic effect. Dicoumarol is bound to the extent of 6 sites per enzyme hexamer with a dissociation constant Kd of 50 muM. Dicoumarol and pentachlorophenol partly prevent the binding of ATP and AMP to the transferase. The reverse reaction is inhibited by dicoumarol and pentachlorophenol without changes in [s]0.5 for phosphoribostladenosine trophosphate. Dicumarol, dinitrophenol and pentachlorophenol diminish the yield of phosphoribosyladenosine triphosphate in the transferase reaction apparently by acting as parasite substrates; carbonylcyanide m-chlorophenylhydrazone had no effect.  相似文献   

3.
To assess quickly the wide range of potential treatments for pruning wounds phytotoxicity and fungitoxicity tests were devised. The phytotoxicity test was based on the growth of poplar callus and the fungitoxicity test on the inhibition of fungal growth on wood strips. Results of field tests were in broad agreement with the laboratory phytotoxicity tests.  相似文献   

4.
Gamma mobility C-reactive protein (CRP) level was determined in the sera of persons occupationally exposed to pesticides and controls in conjunction with serum protein analysis and other biochemical and enzymologic tests. Workers chronically exposed to dieldrin and pentachlorophenol showed significantly higher prevalence of CRP than the unexposed persons. In addition, the pentachlorophenol-exposed subjects revealed significantly elevated levels of total bilirubin and creatine phosphokinase, although the levels were within normal limits. The results suggest that chronic exposure to pentachlorophenol may have been responsible for the difference in the prevalence of CRP between the pentachlorophenol and control groups.  相似文献   

5.
The antibacterial activity of pentachlorophenol and 35 of its known or possible metabolites against 30 different species of bacteria was tested. In comparison with pentachlorophenol, no increase of inhibitory activity was found for any of the chlorinated anisoles tested (except for pentachloroanisole against Streptomyces spp.), 2-chlorophenol, 2,6-dichlorophenol, 2,3,6- and 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, tetrachloro-1,4- and -1,3-benzenediol (except for the 1,3-isomer against Streptomyces spp.), tetrachloro-1,3-dimethoxybenzene, and tetrachloro-1,3-benzenediol diacetate. Two chlorophenols, five dichlorophenols, four trichlorophenols, two tetrachlorophenols, and tetrachloro-1,2-benzenediol were more active than pentachlorophenol against some, but not all, of the strains tested.  相似文献   

6.
The antibacterial activity of pentachlorophenol and 35 of its known or possible metabolites against 30 different species of bacteria was tested. In comparison with pentachlorophenol, no increase of inhibitory activity was found for any of the chlorinated anisoles tested (except for pentachloroanisole against Streptomyces spp.), 2-chlorophenol, 2,6-dichlorophenol, 2,3,6- and 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, tetrachloro-1,4- and -1,3-benzenediol (except for the 1,3-isomer against Streptomyces spp.), tetrachloro-1,3-dimethoxybenzene, and tetrachloro-1,3-benzenediol diacetate. Two chlorophenols, five dichlorophenols, four trichlorophenols, two tetrachlorophenols, and tetrachloro-1,2-benzenediol were more active than pentachlorophenol against some, but not all, of the strains tested.  相似文献   

7.
The pathway for degradation of the xenobiotic pesticide pentachlorophenol in Sphingomonas chlorophenolica probably evolved in the past few decades by the recruitment of enzymes from two other catabolic pathways. The first and third enzymes in the pathway, pentachlorophenol hydroxylase and 2,6-dichlorohydroquinone dioxygenase, may have originated from enzymes in a pathway for degradation of a naturally occurring chlorinated phenol. The second enzyme, a reductive dehalogenase, may have evolved from a maleylacetoacetate isomerase normally involved in degradation of tyrosine. This apparently recently assembled pathway does not function very well: pentachlorophenol hydroxylase is quite slow, and tetrachlorohydroquinone dehalogenase is subject to severe substrate inhibition.  相似文献   

8.
Electrical conductivity induced in thin lipid bilayer membranes by pentachlorophenol has been studied. The membranes were formed from phosphatidyl choline, phosphatidyl ethanolamine, or phosphatidyl glycerol and various amounts of cholesterol. The position and the magnitude of the maximum of the conductivity vs. pH curve depend on the type of lipids and cholesterol content. At low pentachlorophenol concentrations and low pH the concentration dependence of conductivity is quadratic and becomes linear at higher pH. Above 10(-5) M of pentachlorophenol the concentration dependence of the membrane conductivity tends to saturate. Presence of pentachlorophenol enhances membrane transport of nonactin-K+ complex. Increase of cholesterol content increases pentachlorophenol induced conductivity in all membranes and shifts the conductivity toward lower pH. For phosphatidyl choline the largest rate of change of membrane conductivity with cholesterol occurs at 1:1 phospholipid to cholesterol molar ratio. Pentachlorophenol is found to be a class II uncoupler and the experimental results are consistent with the hypothesis that the membrane permeable species are dimers formed by combination of neutral and dissociated pentachlorophenol molecules. Several schemes of membrane conduction, including dimer formation in the aqueous phase as well as at the membrane-water interface have been considered. Arguments are given in favor of the formation of dimers within the membrane surface.  相似文献   

9.
Historic emissions from a Ni refinery at Port Colborne, Ontario, caused Ni contamination of regional soils and raised concerns about potential Ni phytotoxicity. Previous tests revealed that if these soils were made alkaline and fertilized with Mn and other common nutrients as needed to maintain fertility of such alkaline soils, full remediation (prevention of Ni phytotoxicity) would be obtained. This experiment was conducted to test this method of remediation on diverse soils from Port Colborne, and to evaluate chemical extraction tests which would be predictive of plant uptake and potential for Ni phytotoxicity in Ni-contaminated soils. Ten soils with varied levels of Ni contamination and varied soil properties were amended with limestone or nitric acid to raise or lower pH so that a wide pH range could be examined for the soils. For lower Ni organic and mineral soils near the Ontario remediation limit (200 mg/kg), neither crop suffered Ni phytotoxicity at any pH tested. Only when more highly contaminated soils were strongly acidic did Ni phytotoxicity occur. Phytotoxic soils were fully remediated by making soils alkaline even for these Ni-sensitive crop species. Only the most contaminated organic soil remained slightly toxic – but this soil was remarkably contaminated (over 1.1% of Ni). The Sr nitrate extraction method was much more effective in predicting plant Ni concentrations than the DTPA method. This test provides an inexpensive soil extraction result highly predictive of potential for Ni phytotoxicity across soils.  相似文献   

10.
The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research.  相似文献   

11.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

12.
A sensitive fluorimetric method is presented and discussed for the determination of pentachlorophenol in aqueous solutions. This method is based on the inhibitory effect of pentachlorophenol on the reaction of conventional Fenton [Fe(III) + H(2)O(2)] reagent with rhodamine B in the medium of perchloric acid, which results in the fluorescence quenching of rhodamine B. It was further found that the sensitivity for the determination was improved significantly when the molecular ligand EDTA was added. This improved system was therefore presented for the determination of pentachlorophenol. The characteristics of the excitation and emission spectra, optimization of the experimental conditions, the stability of the system and the influence of foreign matter have all been investigated. Under optimal conditions, the linear range for the determination of pentachlorophenol is 12-480 ng/mL with a 3sigma limit of detection of 0.96 ng/mL. Compared with the conventional Fenton system, the improved system shows obvious advantages in both sensitivity and selectivity. By combination with the pretreatment of samples using ion exchange resins and XDA-1 absorption resin, the improved Fenton method was used for the first time for the determination of pentachlorophenol in synthetic samples and natural water samples, and satisfactory results, in agreement with those of the HPLC method, were achieved. The possible mechanism of the reactions has also been discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Field and controlled environment studies were conducted to examine the effects of plant stress during growth on the subsequent phytotoxicity of residues ofBrassica napus andBrassica campestris. High temperatures (30°C compared to 15°C day temperature) and short days (8 hours light compared to 16 hours light) increased the phytotoxicity of residues as measured by a wheat bioassay. Low levels of nutrient supply during growth also increased the toxicity of Brassica residues. The effect of water stress was less clear; severe moisture stress resulted in less phytotoxicity than mild water stress. The two species showed some differences in wheat phytotoxicity following applied plant stress and the field experiments suggested there was a potential for greater toxicity from summer grown residues.  相似文献   

14.
Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol.  相似文献   

15.
Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.  相似文献   

16.
Ligninolytic activities in strains of Lentinula edodes were related to pentachlorophenol biotransformation in sterile soil and activities in L. lepideus. Strains of L. edodes secreting laccase and manganese peroxidase activities also metabolized pentachlorophenol (PCP) significantly ( P < 0.05). Strains of L. lepideus showed neither enzymic activities nor xenobiotic breakdown. Lentinula edodes strains inhibited by PCP at 5 mg 1-1 in agar, tolerated 200 mg kg-1 in soil. Strain LE2 metabolized more PCP in nitrogen-sufficient than nitrogen-limited culture: the reverse was observed with Phanerochaete chrysosporium BKM 1767. Relationships between ligninolytic activities and pentachlorophenol breakdown in L. edodes indicated a suitability for soil bioremediation treatments.  相似文献   

17.
Some recent high-load, low-density pheromone-release devices emit an ethanolic blend of pheromone directly onto crop foliage to control insect pests by mating disruption. This study characterized the phytotoxicity associated with deposition of some pheromonal compounds in concentrated drops on the foliage of trees bearing aerosol release devices. The relative toxicity of straight-chained alkanes, alcohols, aldehydes, and acetates with chain lengths varying from C-2 to approximately C-20 was quantified in the laboratory by the severity of necrotic lesions. The order of severity for phytotoxicity caused by pheromonal compounds was alkanes < acetates = aldehydes < or = alcohols. Within compound classes tested, pheromones with chain lengths of 6-13 carbons were the most phytotoxic. Phytotoxicity was not detectable at dosages <1 mg administered in 10 microl of ethanol. Phytotoxicity of pheromones was highly correlated with presence of both a hydrophilic and lipophilic molecular domain. We postulate nonspecific membrane disruption as a likely mode of action for pheromonal phytotoxicity. Limited attempts to remediate this effect by changing carrier solvents or adding surfactants, spreaders, or nonvolatile diluents were not successful. Because the toxic action of pheromones upon plant tissues appears relatively benign, and growers have not been adverse to localized phytotoxicity to foliage and fruits on two trees per 0.4 ha, we propose that limited phytotoxicity associated with first-generation aerosol dispenser technology can be viewed as non-threatening.  相似文献   

18.
Prolonged cucumber cultivation in the same substrates leads to accumulation of phytotoxic phenolic compounds. Introduction of sweet pepper as an aftercrop eliminates substrate phytotoxicity. The aim of the study was to examine whether in sweet pepper detoxication of substrate phenols occurs by means of the glucosylation process. The examined materials were substrates differing in phytotoxicity level, and sweet pepper plants grown on these substrates. Substrate phytotoxicity was obtained by means of either repeated cucumber cultivation or by phenolic acid addition. During the vegetative growth phase of sweet pepper, the phytotoxicity and phenolic compound levels in the substrate, and the glucosylated phenol contents in above-ground plant parts were determined. Results showed that sweet pepper responds to an increased presence of phenols in the substrate by an intensified glucosylation.  相似文献   

19.
The growth abilities of fifteen fungal strains isolated fromcontaminated areas, in the presence of xenobiotics compounds mixture (overworked cuttingfluid, crude and waste oil) were examined. Strains with the richest growth were chosen for anthracene, phenanthrene and pentachlorophenol biodegradation in Sabouraudmedium (with initial xenobiotic concentration 250 mg/l in cultures with polycyclicaromatic hydrocarbons and 10 mg/l for the chlorinated substrate). Strains IM 1063and IM 6325 were able to attack phenanthrene forming its derivative 9-phenanthrenolwith the yields 5.22 mg/l and 2.82 mg/l, respectively. Strain IM 1063 and IM 6325 transformed pentachlorophenol to an intermediatecompound – pentachloromethoxybenzene. Final content of pentachloromethoxybenzene reached 3.46 mg/l and3.2 mg/l, respectively. Strain IM 6203 (contrary to other strains) released an intermediateproduct of pentachlorophenol metabolism – 2,3,5,6-tetrachlorohydroquinone(8.73 mg/l substrate remaining and 1.2 mg/l 2,3,5,6-tetrachlorohydroquinone forming).The IM 6203 strain was identified as Mucor ramosissimus. The chlorinatedpesticide degradation by M. ramossimus was improved significantly on a medium with overworked oil. Only 8.3% of pentachlorophenol and 4.3% of 2,3,5,6-tetrachlorohydroquinone in relation to the introduced substrate (10 mg/l) were found, after7 days of incubation. The growth of M. ramosissimus on medium with overworked oil in pentachlorophenol presence was associated with oil emulgation,which enhanced fungal growth and the pesticide degradation.  相似文献   

20.
Allelopathic effects of plant litter have been extensively studied, but less attention has been given to the dynamics of phytotoxicity during the decomposition processes. Decomposition experiments were carried out on above- and below-ground plant materials of 25 species of different functional groups (nitrogen fixer, forbs, woody and grasses-sedges) in aerobic and anaerobic conditions. The phytotoxicity of aqueous extracts of decomposing material was assessed by bioassay in 30 d of laboratory and 90 d of litterbag decomposition experiments. Phytotoxicity was widespread with c. 90% of the tested species showing significant phytotoxic releases. Phytotoxicity largely varied between different plant functional groups (nitrogen fixer>forbs=woody>grasses-sedges) and was higher for leaf compared with root materials. In all species tested during decomposition, phytotoxicity rapidly decreased in aerobic conditions but sharply increased and became stable in anaerobic conditions. The results demonstrate an unexpectedly widespread occurrence of phytotoxicity with clear dynamic patterns during the decomposition processes of plant materials. The ecological consequences of this might have been underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号