首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humans can detect and differentiate the presence of different odours even at trace levels of these odorous compounds. The odour quantification of any particular samples is normally based on conventional panel decisions. Other analytical instruments could be used to detect trace levels of odorous molecules. This study presents the results of a biological sensor system subject to different odorants. The system consists of a sensor in which the isolated olfactory receptor proteins (ORPs) from bullfrogs (Rana spp.) were coated onto the surface of a piezoelectric (PZ) electrode, similar to the mechanism of human olfaction. The PZ crystal served as a signal transducer. The results indicate rapid (about 400 s), reversible, and longterm (up to 3 months) stable responses to different volatile compounds such as n-caproic acid, isoamyl acetate, n-decyl alcohol, beta-ionone, linalool, and ethyl caporate. The sensitivity of the sensor ranges from 10(-6)-10(-7) g, fully correlated with the olfactory threshold values of human noses. An array of six sensors consisting of five fractionated ORPs and one referenced phospholipid probe is able to respond to different odorants and form a typical fingerprint for each odorant.  相似文献   

2.
Yin J  Wei W  Liu X  Kong B  Wu L  Gong S 《Analytical biochemistry》2007,360(1):99-104
A biosensor based on bovine serum albumin (BSA) for the detection of lead (Pb(2+)) ion was developed and characterized. BSA was immobilized onto a colloidal Au-modified piezoelectric quartz crystal (PQC) as a biosensor for the detection of Pb(2+) ion by piezoelectric quartz crystal impedance (PQCI). Calibration curves for the quantification of Pb(2+) ion showed excellent linearity throughout the concentration range from 1.0 x 10(-7) to 3.0 x 10(-9)mol/L. The interaction between the Pb(2+) ions and the sensor chip is influenced significantly by the pH of the reaction buffer, and the optimal pH for the experiment was 5.4. Under the optimal conditions, the detection limit of 1.0 x 10(-9)mol/L for Pb(2+) was obtained. Kinetic parameters of the Pb(2+)-BSA interactions were also determined by using this chip. The sensor chip could be regenerated for use by dipping in the ethylenediaminetetraacetic acid (EDTA) solution for approximately 2h, and the chip was used to detect Pb(2+) ion for eight times without obvious signal attenuation.  相似文献   

3.
A group-specific bioluminescent Escherichia coli strain for studying the action of beta-lactam antibiotics is described. The strain contains a plasmid, pBlaLux1, in which the luciferase genes from Photorhabdus luminescens are inserted under the control of the beta-lactam-responsive element ampR/ampC from Citrobacter freundii. In the presence of beta-lactams, the bacterial cells are induced to express the luciferase enzyme and three additional enzymes generating the substrate for the luciferase reaction. This biosensor for beta-lactams does not need any substrate or cofactor additions, and the bioluminescence can be measured very sensitively in real time by using a luminometer. Basic parameters affecting the light production and induction in the gram-negative model organism E. coli SNO301/pBlaLux1 by various beta-lactams were studied. The dose-response curves were bell shaped, indicating toxic effects for the sensor strain at high concentrations of beta-lactams. Various beta-lactams had fairly different assay ranges: ampicillin, 0.05-1.0 microg/ml; piperacillin, 0.0025-25 microg/ml; imipenem, 0.0025-0.25 microg/ml; cephapirin, 0.025-2.5 microg/ml; cefoxitin, 0.0025-1.5 microg/ml; and oxacillin, 25-500 microg/ml. Also, the induction coefficients (signal over background noninduced control) varied considerably from 3 to 158 in a 2-hour assay. Different non-beta-lactam antibiotics did not cause induction. Because the assay can be automated using microplate technologies, the approach may be suitable for higher throughput analysis of beta-lactam action.  相似文献   

4.
A quartz crystal microbalance (QCM) DNA sensor, based on the nanoparticle amplification method, was developed for detection of Escherichia coli O157:H7. A thiolated single-stranded DNA (ssDNA) probe specific to E. coli O157:H7 eaeA gene was immobilized onto the QCM sensor surface through self-assembly. The hybridization was induced by exposing the ssDNA probe to the complementary target DNA, and resulted in the mass change and therefore frequency change of the QCM. Streptavidin conjugated Fe(3)O(4) nanoparticles (average diameter=145 nm) were used as "mass enhancers" to amplify the frequency change. Synthesized biotinylated oligonucleotides as well as E. coli O157:H7 eaeA gene fragments (151 bases) amplified using asymmetric PCR with biotin labeled primers were tested. As low as 10(-12)M synthesized oligonucleotides and 2.67 x 10(2) colony forming unit (CFU)/ml E. coli O157:H7 cells can be detected by the sensor. Linear correlation between frequency change and logarithmic number of bacterial cell concentration was found for E. coli O157:H7 from 2.67 x 10(2) to 2.67 x 10(6)CFU/ml.  相似文献   

5.
A rapid biosensor for the detection of bacterial growth was developed using micromechanical oscillators coated by common nutritive layers. The change in resonance frequency as a function of the increasing mass on a cantilever array forms the basis of the detection scheme. The sensor is able to detect active growth of Escherichia coli cells within 1 h which is significantly faster than any conventional plating method which requires at least 24 h. The growth of E. coli was confirmed by scanning electron microscopy. This new sensing method for the detection of active bacterial growth allows future applications in, e.g., rapid antibiotic susceptibility testing by adding antibiotics to the nutritive layer.  相似文献   

6.
The interaction of riboflavin with salmon sperm double-stranded DNA based on the decreasing of the oxidation signal of guanine and adenine bases was studied electrochemically with a pencil graphite electrode (PGE) using differential pulse voltammetry. The decrease in the intensity of the guanine and adenine oxidation signals after interaction with riboflavin was used as an indicator signals for the sensitive determination of riboflavin. Under the optimum conditions, a linear dependence of the guanine and adenine oxidation signals was observed for the riboflavin concentration in the range of 0.5-70 μg mL(-1) with a detection limit of 0.34 μg mL(-1) at ds-DNA modified PGE. The reproducibility and applicability of the analysis to pharmaceutical dosage forms and urine sample were also investigated. These results showed that this DNA biosensor could be used for the sensitive, rapid, simple and cost effective detection and determination of riboflavin-ds-DNA interaction. Pretreated pencil graphite electrode (PPGE) was also used for the determination of riboflavin by differential pulse adsorptive stripping voltammetry. With PPGE, a linear relationship was obtained for riboflavin over the concentration range of 0.003-0.88 μg mL(-1) with differential pulse adsorptive stripping voltammetric signal and with a detection limit of 0.076 ng mL(-1). Both determination methods were fully validated and applied for the analysis of riboflavin.  相似文献   

7.
The X-ray structure of the periplasmic ribose receptor (binding protein) of Escherichia coli (RBP) was solved at 3 A resolution by the method of multiple isomorphous replacement. Alternating cycles of refitting and refinement have resulted in a model structure with an R-factor of 18.7% for 27,526 reflections from 7.5 to 1.7 A resolution (96% of the data). The model contains 2228 non-hydrogen atoms, including all 271 residues of the amino acid sequence, 220 solvent atoms and beta-D-ribose. The protein consists of two highly similar structural domains, each of which is composed of a core of parallel beta-sheet flanked on both sides by alpha-helices. The two domains are related to each other by an almost perfect 2-fold axis of rotation, with the C termini of the beta-strands of each sheet pointing toward the center of the molecule. Three short stretches of amino acid chain (from symmetrically related portions of the protein) link these two domains, and presumably act as a hinge to allow relative movement of the domains in functionally important conformational changes. Two water molecules are also an intrinsic part of the hinge, allowing crucial flexibility in the structure. The ligand beta-D-ribose (in the pyranose form) is bound between the domains, held by interactions with side-chains of the interior loops. The binding site is precisely tailored, with a combination of hydrogen bonding, hydrophobic and steric effects giving rise to tight binding (0.1 microM for ribose) and high specificity. Four out of seven binding-site residues are charged (2 each of aspartate and arginine) and contribute two hydrogen bonds each. The remaining hydrogen bonds are contributed by asparagine and glutamine residues. Three phenylalanine residues supply the hydrophobic component, packing against both faces of the sugar molecule. The arrangement of these hydrogen bonding and hydrophobic residues results in an enclosed binding site with the exact shape of the allowed sugar molecules; in the process of binding, the ligand loses all of its surface-accessible area. The sites of two mutations that affect the rate of folding of the ribose receptor are shown to be located near small cavities in the wild-type protein. The cavities thus allow the incorporation of the larger residues in the mutant proteins. Since these alterations would seriously affect the ability of the protein to build the first portion of the hydrophobic core in the first domain, it is proposed that this process is the rate-limiting step in folding of the ribose receptor.  相似文献   

8.
The Escherichia coli K-12 outer membrane protein OmpA functions as the receptor for bacteriophage Ox2. We isolated a host range mutant of this phage which was able to grow on an Ox2-resistant ompA mutant producing an altered OmpA protein. From this mutant, Ox2h5, a second-step host range mutant was recovered which formed turbid plaques on a strain completely lacking the OmpA protein. From one of these mutants, Ox2h10, a third-step host range mutant, Ox2h12, was isolated which formed clear plaques on a strain missing the OmpA protein. Ox2h10 and Ox2h12 apparently were able to use both outer membrane proteins OmpA and OmpC as receptors. Whereas there two proteins are very different with respect to primary structures and functions, the OmpC protein is very closely related to another outer membrane protein, OmpF, which was not recognized by Ox2h10 or Ox2h12. An examination of the OmpC amino acid sequence, in the regions where it differs from that of OmpF, revealed that one region shares considerable homology with a region of the OmpA protein which most likely is required for phage Ox2 receptor activity.  相似文献   

9.
In this paper we report a stable, label-free, bacteriophage-based detection of Escherichia coli (E. coli) using ultra sensitive long-period fiber gratings (LPFGs). Bacteriophage T4 was covalently immobilized on optical fiber surface and the E. coli binding was investigated using the highly accurate spectral interrogation mechanism. In contrast to the widely used surface plasmon resonance (SPR) based sensors, no moving part or metal deposition is required in our sensor, making the present sensor extremely accurate, very compact and cost effective. We demonstrated that our detection mechanism is capable of reliable detection of E. coli concentrations as low as 10(3)cfu/ml with an experimental accuracy greater than 99%.  相似文献   

10.
A quantitative real-time PCR targeting the tnaA gene was studied to detect Escherichia coli and distinguish E. coli from Shigella spp. These microorganisms revealed high similarity in the molecular organization of the tna operon.  相似文献   

11.
Mutants with reduced lysine decarboxylase activity were isolated from an Escherichia coli polyamine auxotroph. These mutants could not produce induced enzyme, showing only a very low level of an apparently constitutive form. Both enzyme forms could be demonstrated in the parental strain.  相似文献   

12.
A highly sensitive and specific RNA biosensor was developed for the rapid detection of viable Escherichia coli as an indicator organism in water. The biosensor is coupled with protocols developed earlier for the extraction and amplification of mRNA molecules from E. coli [Anal. Biochem. 303 (2002) 186]. However, in contrast to earlier detection methods, the biosensor allows the rapid detection and quantification of E. coli mRNA in only 15-20 min. In addition, the biosensor is portable, inexpensive and very easy to use, which makes it an ideal detection system for field applications. Viable E. coli are identified and quantified via a 200 nt-long target sequence from mRNA (clpB) coding for a heat shock protein. For sample preparation, a heat shock is applied to the cells prior to disruption. Then, mRNA is extracted, purified and finally amplified using the isothermal amplification technique Nucleic acid sequence-based amplification (NASBA). The amplified RNA is then quantified with the biosensor. The biosensor is a membrane-based DNA/RNA hybridization system using liposome amplification. The various biosensor components such as DNA probe sequences and concentration, buffers, incubation times have been optimized, and using a synthetic target sequence, a detection limit of 5 fmol per sample was determined. An excellent correlation to a much more elaborate and expensive laboratory based detection system was demonstrated, which can detect as few as 40 E. coli cfu/ml. Finally, the assay was tested regarding its specificity; no false positive signals were obtained from other microorganisms or from nonviable E. coli cells.  相似文献   

13.
A piezoelectric immunosensor was developed for rapid detection of Escherichia coli O157:H7. It was based on the immobilization of affinity-purified antibodies onto a monolayer of 16-mercaptohexadecanoic acid (MHDA), a long-chain carboxylic acid-terminating alkanethiol, self-assembled on an AT-cut quartz crystal's Au electrode surface with N-hydroxysuccinimide (NHS) ester as a reactive intermediate. The binding of target bacteria onto the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of both quartz crystal microbalance (QCM) and cyclic voltammetry techniques. Three analytical procedures, namely immersion, dip-and-dry and flow-through methods, were investigated. The immunosensor could detect the target bacteria in a range of 10(3)-10(8)CFU/ml within 30-50 min, and the sensor-to-sensor reproducibility obtained at 10(3) and 10(5) colony-forming units (CFU)/ml was 18 and 11% R.S.D., respectively. The proposed sensor was comparable to Protein A-based piezoelectric immunosensor in terms of the amount of immobilized antibodies and detection sensitivity.  相似文献   

14.
Spectroscopic methods were used to monitor the unfolding of the leucine specific (LS) and the leucine-isoleucine-valine (LIV) binding proteins. Our studies indicate that ligand-free protein undergoes a simple two-state unfolding, whereas the protein-ligand complex undergoes a three-state unfolding model. Ligand binding causes significant stabilization of both proteins. There is correlation between ligand hydrophobicity and protein stabilization: the most hydrophobic ligand, isoleucine, causes the most significant stabilization of LIV protein. A disulfide bond present in N-domain of both proteins makes a large contribution to the protein stability of these periplasmic binding receptors.  相似文献   

15.
Summary We attempted to correlate structural modifications of the adenosine 3,5 cyclic monophosphate (cAMP) receptor protein (CAP), to changes in some of its in vivo regulatory functions such as (i) stimulation of the lactose operon expression and (ii) control of adenylate cyclase activity. A radioimmunological procedure was used to study the structure of CAP synthesized by three mutants (crpX) grown under various conditions, in the presence or absence of endogenous or exogenous cAMP. In one mutant CAP appears to be sensitive to thermal inactivation. In another mutant CAP is particularly sensitive to degradation in the absence of cAMP; this degradation is enhanced by high temperature and during stationary phase of grwoth, and prevented by the addition of glucose. Functional alterations of CAP were not found to follow structural changes strictly. In the crpX mutants and in strains carrying the crp + or other crp allele, the stimulation of the lactose operon expression and the modulation of the in vivo rates of cAMP synthesis appear to vary in parallel, favoring an indirect mechanism of regulation of adenylate cyclase by CAP.  相似文献   

16.
The quartz crystal microbalance (QCM) was used to create a piezoelectric biosensor utilizing living endothelial cells (ECs) as the biological signal transduction element. ECs adhere to the hydrophilically treated gold QCM surface under growth media containing serum. At 24 h following cell addition, calibration curves were constructed relating the steady state Δf and ΔR shift values observed to the numbers of electronically counted cells requiring trypsinization to be removed from the surface. We then utilized this EC QCM biosensor for the detection of the effect of [nocodazole] on the steady state Δf and ΔR shift values. Nocodazole, a known microtubule binding drug, alters the cytoskeletal properties of living cells. At the doses used in these studies (0.11–15 μM), nocodazole, in a dose dependent fashion, causes the depolymerization of microtubules in living cells. This leads a monolayer of well spread ECs to gradually occupy a smaller area, lose cell to cell contact, exhibit actin stress fibers at the cell periphery and acquire a rounded cell shape. We observed the negative Δf shift values and the positive ΔR shift values to increase significantly in magnitude over a 4-h incubation period following nocodazole addition, in a dose dependent fashion, with a transition midpoint of 900 nM. Fluorescence microscopy of the ECs, fixed on the gold QCM surface and stained for actin, demonstrated that the shape and cytoskeleton of ECs were affected by as little as 330 nM nocodazole. These results indicate that the EC QCM biosensor can be used for the study of EC attachment and to detect EC cytoskeletal alterations. We suggest the potential of this cellular biosensor for the real time identification or screening of all classes of biologically active drugs or biological macromolecules that affect cellular attachment, regardless of their molecular mechanism of action.  相似文献   

17.
A DNA piezoelectric biosensing method for real-time detection of Escherichia coli O157:H7 in a circulating-flow system was developed in this study. Specific probes [a 30-mer oligonucleotide with or without additional 12 deoxythymidine 5′-monophosphate (12-dT)] for the detection of E. coli O157:H7 gene eaeA, synthetic oligonucleotide targets (30 and 104 mer) and PCR-amplified DNA fragments from the E. coli O157:H7 eaeA gene (104 bp), were used to evaluate the efficiency of the probe immobilization and hybridization with target DNA in the circulating-flow quartz crystal microbalance (QCM) device. It was found that thiol modification on the 5′-end of the probes was essential for probe immobilization on the gold surface of the QCM device. The addition of 12-dT to the probes as a spacer, significantly enhanced (P < 0.05) the hybridization efficiency (H%). The results indicate that the spacer enhanced the H% by 1.4- and 2-fold when the probes were hybridized with 30- and 104-mer targets, respectively. The spacer reduced steric interference of the support on the hybridization behavior of immobilized oligonucleotides, especially when the probes hybridized with relatively long oligonucleotide targets. The QCM system was also applied in the detection of PCR-amplified DNA from real samples of E. coli O157:H7. The resultant H% of the PCR-amplified double-strand DNA was comparable to that of the synthetic target T-104AS, a single-strand DNA. The piezoelectric biosensing system has potential for further applications. This approach lays the groundwork for incorporating the method into an integrated system for rapid PCR-based DNA analysis.  相似文献   

18.
Summary The expression of many secreted recombinant proteins in Gram-negative bacteria is limited by degradation in the periplasmic space. We have previously shown that the production of protein A--lactamase, a secreted fusion protein highly sensitive to proteolysis in Escherichia coli, can be increased in mutant strains deficient in up to three cell-envelope-associated proteolytic activities. In this work we investigated the effect of fermentation conditions on suppressing any residual proteolytic activity in various protease-deficient strains. Optimal production of the fusion protein was observed in cells grown under mildly acidic conditions (5.5pH6.0) and at low temperatures. These conditios were shown to specifically decrease the rate of proteolysis. In addition, a further increase in production was observed in cultures supplemented with 0.5 to 0.75 mM zinc chloride. This may relate to the inhibition of a cell envelope protease by Zn2+ ions. Offsprint requests to: G. Georgiou  相似文献   

19.
Chromosomes are divided into topologically independent regions, called domains, by the action of uncharacterized barriers. With the goal of identifying domain barrier components, we designed a genetic selection for mutants with reduced negative supercoiling of the Escherichia coli chromosome. We employed a strain that contained two chromosomally located reporter genes under the control of a supercoiling-sensitive promoter and used transposon mutagenesis to generate a wide range of mutants. We subjected the selected mutants to a series of secondary screens and identified five proteins as modulators of chromosomal supercoiling in vivo. Three of these proteins: H-NS, Fis and DksA, have clear ties to chromosome biology. The other two proteins, phosphoglucomutase (Pgm) and transketolase (TktA), are enzymes involved in carbohydrate metabolism and have not previously been shown to affect DNA. Deletion of any of the identified genes specifically affected chromosome topology, without affecting plasmid supercoiling. We suggest that at least H-NS, Fis and perhaps TktA assist directly in the supercoiling of domains by forming topological barriers on the E. coli chromosome.  相似文献   

20.
Recently a periplasmic glucose/galactose binding protein, GGRQ26C, immobilized on a gold surface has been used as an active part of a glucose biosensor based on quartz microbalance technique. However the nature of the glucose detection was not clear. Here we have found that the receptor protein film immobilized on the gold surface increases its rigidity when glucose is added, which explains the unexpected detection signal. To study the rigidity change, we developed a new fast and simple method based on using atomic force microscopy (AFM) in tapping mode. The method was verified by explicit measurements of the Young's modulus of the protein film by conventional AFM methods. Since there are a host of receptors that undergo structural change when activated by ligand, AFM can play a key role in the development and/or optimization of biosensors based on rigidity changes in biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号