首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wild-type strain of Rhodococcus equi, isolated from soil, degraded cholesterol, -sitosterol, stigmasterol and mixed sterois to androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD). A definite preference for a relatively simply structured cholesterol side chain was observed. Highest specific cholesterol side-chain cleavage was associated with active growth of the culture. Maximum yield of ADD was obtained when sodium acetate and cholesterol were incorporated together in the medium. Specific side-chain cleavage required the presence of 2,2-dipyridyl, an inhibitor of ring cleavage.S. Ahmad and B.N. Johri are with the Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantriagar 263 145, Nainital, UP, India. P.K. Roy, A.W. Khan and S.K. Basu are at Fermentation Technology Division, Central Drug Research Institute, Lucknow, India.  相似文献   

2.
All of the four 20,22-epoxycholesterols and (E)-20(22)-dehydrocholesterol were chemically synthesized and incubated with purified adrenocortical cytochrome P-450scc in the presence of an appropriate electron-supplying system. None of these cholesterol derivatives were significantly converted to pregnenolone by the enzyme. A slight inhibition of the side-chain cleavage of radioactive cholesterol was observed by the addition of the cholesterol derivatives, but there occurred no trapping of the radioactivity by these compounds. It may be concluded that the side-chain cleavage of cholesterol by the adrenal cytochrome P-450 does not operate through olefin and epoxide formation as the intermediates.  相似文献   

3.
E J van Haren  A D Tait 《FEBS letters》1988,232(2):377-380
Mitochondrial preparations from endocrine tissues were incubated with radioactive cholesterol and the effect of hydroxylated metabolites of 23,24-dinor-5-cholen-3 beta-ol (23,24-dinor-5-cholene-3 beta,20-diol and 23,24-dinor-5-cholene-3 beta,21-diol) on the production of pregnenolone was measured. These compounds are intermediates in an alternative, sesterterpene pathway for steroid hormone biosynthesis. It was found that these materials, like the analogous side-chain-hydroxylated derivatives of cholesterol (20 alpha-hydroxycholesterol and 22S-hydroxycholesterol), inhibit cholesterol side-chain cleavage. The possibility that there could be a control mechanism whereby metabolites of 23,24-dinor-5-cholen-3 beta-ol inhibit steroidogenesis occurring by the cholesterol pathway is discussed.  相似文献   

4.
Summary Rhodococcus equi cells immobilized onto porous celite beads were active in side-chain cleavage of cholesterol. The effect of bead size, adsorption time and washing cycles were examined. The degradation of cholesterol side-chain using adsorbed cells was studied in batch and semi-continuous systems. Compared to free cells (80 mol%), the end-product (1,4-androstadiene-3,17-dione and 4-androstene-3,17-dione) profile was lower (70 mol%) with the celite-adsorbed system. Correspondence to: B. N. Johri  相似文献   

5.
AIMS: To isolate a bacterium capable of degrading 3 beta-acetoxypregna-5,16-diene-20-one (16-DPA) to androsta-1,4-diene-3,17-dione (ADD) and to decipher the biodegradation pathway. METHODS AND RESULTS: Isolation on mineral salt agar containing 16-DPA as sole carbon source yielded two bacteria identified as Pseudomonas diminuta and Comamonas acidovorons. These bacteria failed to degrade 16-DPA individually in pure cultures but converted 16-DPA to ADD in a mixed culture. The intermediates accumulated during the bioconversion were identified as pregna-4,16-diene-3,20-dione and pregna-1,4,16-triene-3,20-dione. CONCLUSIONS: The degradation pattern of 16-DPA by mixed bacterial culture revealed the reaction sequence as (i) cleavage of C-3 acetyl function, (ii) dehydrogenation at C-1 and C-2 positions and (iii) cleavage of C-17 side-chain. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work opens a new approach towards the production of a female sex hormone precursor and elucidates the biodegradation pathway of 16-DPA by mixed bacterial culture.  相似文献   

6.
The C‐19 steroids 4‐androstene‐3,17‐dione (AD), 1,4‐androstadiene‐3,17‐dione (ADD) or 9α‐hydroxy‐4‐androstene‐3,17‐dione (9OH‐AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH‐AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR‐like regulator (MSMEG_2868) can efficiently metabolize all C‐19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C‐19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C‐19+ cluster has apparently evolved independently from the upper cholesterol kstR‐regulon, but both clusters converge on the lower cholesterol kstR2‐regulon responsible for the metabolism of C and D steroid rings. Homologous C‐19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.  相似文献   

7.
A goat antibody produced against homogeneous bovine adrenal ferrodoxin has been employed to study the involvement of this iron-sulfur protein in the side-chain cleavage of 20α-hydroxycholesterol catalyzed by a soluble fraction, supernatant S1, prepared from sonicated bovine adrenocortical mitochondria. When added to this supernatant, the antibody inhibited the side-chain cleavage of 20α-hydroxycholesterol as well as the side-chain cleavage of cholesterol, the 11β-hydroxylation of deoxycorticosterone, and the NADPH-dependent reduction of cytochrome c. These results demonstrate that, similar to the NADPH-cytochrome c reductase and both the cholesterol side-chain cleavage and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the side-chain cleavage of 20α-hydroxycholesterol.  相似文献   

8.
Cholesterol oxidase activity was studied during biotransformation of cholesterol to androsta-1,4-diene-3,17-dione (ADD) by Chryseobacterium gleum. Spent LB media, containing cholesterol (3 mM≈1 g l−1) where the bacterium was grown for 24 h, at 30°C with constant shaking at 120 rpm, had the highest enzyme activity (167 U mg−1). The growing cells produced 0.076 g ADD from 1 g cholesterol l−1.  相似文献   

9.
A novel two-step transformation process for the production of androsta-l by microorganisms-diene-3,17-dione (ADD) from a high concetration of cholesterol by microorganisms is proposed. Cholesterol (20 g/l) was initially converted to cholest-4-en-3-one (cholestenone) by an inducible cholesterol oxidase-producing bacterium, Arthrobacter simplex U-S-A-18. The maximum productivity of cholestenone was 8 g/l per day and the molar conversion rate was 80%. Subsequently, a fine suspension of cholestenone (50 g/l), which was prepared directly from the fermentation broth of A. simplex, was converted to ADD by Mycobacterium sp. NRRL B-3683 in the presence of an androstenone adsorbent, Amberlite XAD-7. The maximum productivity of ADD was 0.91 g/l per day and the molar conversion rate was 35%. Correspondence to: W.-H. Liu  相似文献   

10.
The denitrifying betaproteobacterium Sterolibacterium denitrificans serves as model organism for studying the oxygen‐independent degradation of cholesterol. Here, we demonstrate its capability of degrading various globally abundant side chain containing zoo‐, phyto‐ and mycosterols. We provide the complete genome that empowered an integrated genomics/proteomics/metabolomics approach, accompanied by the characterization of a characteristic enzyme of steroid side chain degradation. The results indicate that individual molybdopterin‐containing steroid dehydrogenases are involved in C25‐hydroxylations of steroids with different isoprenoid side chains, followed by the unusual conversion to C26‐oic acids. Side chain degradation to androsta‐1,4‐diene‐3,17‐dione (ADD) via aldolytic C–C bond cleavages involves acyl‐CoA synthetases/dehydrogenases specific for the respective 26‐, 24‐ and 22‐oic acids/‐oyl‐CoAs and promiscuous MaoC‐like enoyl‐CoA hydratases, aldolases and aldehyde dehydrogenases. Degradation of rings A and B depends on gene products uniquely found in anaerobic steroid degraders, which after hydrolytic cleavage of ring A, again involves CoA‐ester intermediates. The degradation of the remaining CD rings via hydrolytic cleavage appears to be highly similar in aerobic and anaerobic bacteria. Anaerobic cholesterol degradation employs a composite repertoire of more than 40 genes partially known from aerobic degradation in gammaproteobacteria/actinobacteria, supplemented by unique genes that are required to circumvent oxygenase‐dependent reactions.  相似文献   

11.
A goat antibody produced against bovine adrenal ferredoxin has been employed to establish immunochemically the involvement of adrenal ferredoxin in the cholesterol side-chain cleavage reaction catalyzed by mammalian adrenal mitochondria. When added to preparations of bovine adrenocortical mitochondria, this antibody was found to inhibit the conversion of cholesterol to pregnenolone and progesterone, the 11β-hydroxylation of deoxycorticosterone and the NADPH-dependent reduction of cytochrome c. These observations demonstrate that, similar to the NADPH-cytochrome c reductase and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the oxidative cleavage of the cholesterol side-chain catalyzed by bovine adrenocortical mitochondria.The goat antibody to bovine adrenal ferredoxin was also found to interact with the comparable iron-sulfur proteins present in mitochondria prepared from sheep, rat, mouse, cat, dog, guinea pig, rabbit, and human adrenals. The interaction of the antibody with these iron-sulfur proteins resulted in the inhibition of both the cholesterol side-chain cleavage and NADPH-cytochrome c reductase activities catalyzed by these adrenal mitochondria. The NADH-dependent reduction of cytochrome c catalyzed by mammalian adrenal mitochondria was not inhibited by the goat antibody to adrenal ferredoxin. These results demonstrate the immunochemical similarity existing among mammalian adrenal ferredoxins and their involvement in the adrenal cholesterol side-chain cleavage reaction.  相似文献   

12.

Background  

The present study was designed to examine the effect of chronic treatment with rosiglitazone - thiazolidinedione used in the treatment of type 2 diabetes mellitus for its insulin sensitizing effects - on the Leydig cell steroidogenic capacity and expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc) in normal adult rats.  相似文献   

13.
11α-hydroxylated steroid synthons are one of the most important commercially pharmaceutical intermediates used for the production of contraceptive drugs and glucocorticoids. These compounds are currently produced by biotransformation using fungal strains in two sequential fermentation steps. In this work, we have developed by a rational design new recombinant bacteria able to produce 11α-hydroxylated synthons in a single fermentation step using cholesterol (CHO) or phytosterols (PHYTO) as feedstock. We have designed a synthetic operon expressing the 11α-hydroxylating enzymes from the fungus Rhizopus oryzae that was cloned into engineered mutant strains of Mycolicibacterium smegmatis that were previously created to produce 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) from sterols. The introduction of the fungal synthetic operon in these modified bacterial chassis has allowed producing for the first time 11αOH-AD and 11αOH-ADD with high yields directly from sterols in a single fermentation step. Remarkably, the enzymes of sterol catabolic pathway from M. smegmatis recognized the 11α-hydroxylated intermediates as alternative substrates and were able to efficiently funnel sterols to the desired hydroxylated end-products.  相似文献   

14.
Cholesterol decomposing ability of 1589 microbial strains was examined. Two hundreds and thirty six strains from actinomycetes, bacteria, molds, and yeasts were found capable of oxidizing cholesterol into cholestenone. Cholesta-1,4-dien-3-one was produced by 5 strains of Streptomyces. The complete decomposition of cholesterol molecule was observed in the genera: Arthrobacter, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Mycobacterium, Nocardia, Protaminobacter, Serratia, and Streptomyces. α,α′-Dipyridyl and arsenite inhibited decomposing enzymes giving rise to cholestenone, cholesta-1,4-dien-3-one, and an intermediate probably devoid of the sterol side chain.

Selective cleavage of the side chains of various sterols at C-17, giving rise to androsta-1,4-diene-3,17-dione (ADD), occurred in the presence of α,α′-dipyridyl by microorganisms of the following genera: Arthrobacter, Bacillus, Brevibacterium, Corynebacterium, Microbacterium, Mycobacterium, Nocardia, Protaminobacter, Serratia, and Streptomyces. The degradation pathway of cholesterol, for example, was shown as follows:

Other sterols such as campesterol, β-sitosterol, stigmasterol and 7-dehydrocholesterol were degraded by the same sequence. The pathway exemplified in cholesterol is considered to be the general degradation pathway of sterols by their decomposing microorganisms.

It was further demonstrated that ADD thus formed from sterols was converted into 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione.  相似文献   

15.
Cleavage of the ether bond of chlorophenoxyalkanoate herbicides is catalyzed by an α‐ketoglutarate‐linked dioxygenase (TfdA). In this step, α‐ketoglutarate is decarboxylated to succinate and must be regenerated for continual substrate cleavage. Limitations in herbicide degradation are to be expected in the case of a shortage of α‐ketoglutarate. Such a situation was simulated and studied with Delftia (formerly Comamonas) acidovorans MC1 and Rhodoferax sp. P230, which constitutively express etherolytic dioxygenase activity by excreting 2,4‐dichlorophenol (DCP) as a dead‐end product. The results showed that 2,4‐dichlorophenoxyacetate (2,4‐D) could hardly be cleaved under these conditions which is attributed to the inability to regenerate α‐ketoglutarate from the cleavage products, i.e. succinate and glyoxylate [1 ]. With pyruvate, in contrast, liberated as the oxidized alkanoic acid from the cleavage of (RS )‐2‐(2,4‐dichlorophenoxy)propionate (2,4‐DP), the regeneration of α ‐ketoglutarate seems to be guaranteed from succinate as resulted from the utilization of 2,4‐DP to a considerable amount under these conditions. The extent was limited, however, which was apparently caused by the accumulation of DCP. Continual cleavage of 2,4‐DP could be demonstrated in the presence of Ochrobactrum sp. K2‐14, which functions as a DCP‐consuming strain. Addition of extra metabolites, i.e. α‐ketoglutarate or other readily metabolizable substrates, improved the cleavage of the herbicides. This was most pronounced with 2,4‐D that was found now to be also utilized to a considerable extent. Conversely, the cleavage of the herbicides (2,4‐DP) was reduced and ultimately ceased with cells depleted by starvation of the pool of metabolites. Again, this deficit could be restored by adding α‐ketoglutarate. The limitations in utilizing phenoxyalkanoate herbicides are discussed in terms of pseudo‐recalcitrance owing to deficits in metabolites (α‐ketoglutarate) rather than enzyme activity (TfdA).  相似文献   

16.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

17.
We have shown earlier that microsomal cytochrome b 5 can form a specific complex with mitochondrial cytochrome P450 (cytochrome P450scc). The formation of the complex between these two heme proteins was proved spectrophotometrically, by affinity chromatography on immobilized cytochrome b 5, and by measuring the cholesterol side-chain cleavage activity of cytochrome P450scc in a reconstituted system in the presence of cytochrome b 5. To further study the mechanism of interaction of these heme proteins and evaluate the role of negatively charged amino acid residues Glu42, Glu48, and Asp65 of cytochrome b 5, which are located at the site responsible for interaction with electron transfer partners, we used sitedirected mutagenesis to replace residues Glu42 and Glu48 with lysine and residue Asp65 with alanine. The resulting mutant forms of cytochrome b 5 were expressed in E. coli, and full-length and truncated forms (shortened from the C-terminal sequence due to cleavage of 40 amino acid residues) of these cytochrome b 5 mutants were purified. Addition of the truncated forms of cytochrome b 5 (which do not contain the hydrophobic C-terminal sequence responsible for interaction with the membrane) to the reconstituted system containing cytochrome P450scc caused practically no stimulation of catalytic activity, indicating an important role of the hydrophobic fragment of cytochrome b 5 in its interaction with cytochrome P450scc. However, full-length cytochrome b 5 and the full-length Glu48Lys and Asp65Ala mutant forms of cytochrome b 5 stimulated the cholesterol side-chain cleavage reaction catalyzed by cytochrome P450scc by 100%, suggesting that residues Glu48 and Asp65 of cytochrome b 5 are not directly involved in its interaction with cytochrome P450scc. The replacement of Glu42 for lysine, however, made the Glu42Lys mutant form of cytochrome b 5 about 40% less effective in stimulation of the cholesterol side-chain cleavage activity of cytochrome P450scc, indicating that residue Glu42 of cytochrome b 5 is involved in electrostatic interactions with cytochrome P450scc. Residues Glu42 and Glu48 of cytochrome b 5 appear to participate in electrostatic interaction with microsomal type cytochrome P450.  相似文献   

18.
One soluble cytochrome P.450 from bovine adrenocortical mitochondria has been purified to near homogeneity. The purified enzyme catalyses side-chain cleavage of cholesterol and to a much lesser extent 11β-hydroxylation (<13% side-chain cleavage) but shows no 18-hydroxylase activity. The molecular weight of this P.450 is approximately 800,000.  相似文献   

19.
As a region with one of the most important terrestrial ecosystems, the Tibetan plateau is both sensitive to and vulnerable to climate warming. Locusta migratoria tibetensis Chen, an endemic species on the Tibetan plateau, is likely to be affected by climatic warming. In our studies, accumulated degree‐days (ADD) of L. Migratoria T.C. were calculated based on data from 90 weather stations over the Tibetan plateau from 1961 to 2005. Trend lines show that across weather stations, ADD increased at a rate of 1.17 DD/a during climate warming. The majority of weather stations (82.2%) showing increases in ADD were located towards the west of the Tibetan plateau. At higher elevations, the increase in the ratio of annual ADD to the station mean ADD was higher relative to those at lower elevations. A linear regression model between ADD and geographical position was established to create raster maps of ADD in ArcGIS 9.2. The area of potential locust distribution (APD) was estimated to be 42 420 km2, mostly distributed along major rivers on the Tibetan plateau. In warmer years, the APD increased sharply over study periods. A new area of potential distribution would appear in the north Tibetan plateau if the climate warming continued. In the south‐east Tibetan plateau, the locust would expand its range northwards or westwards along the river valleys, and the locust APD would also rise in elevation.  相似文献   

20.

Background  

The objective of this study was to investigate whether the steroid hormone(s) secreted from cumulus-oocyte complexes (COCs) is a prerequisite for bovine oocyte maturation and cumulus expansion using aminoglutethimide (AGT), a P450 cholesterol side-chain cleavage inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号