首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, viable models of cysteine dioxygenase (CDO) and its complex with l ‐cysteine dianion were built for the first time, under strict adherence to the crystal structure from X‐ray diffraction studies, for all atom molecular dynamics (MD). Based on the CHARMM36 FF, the active site, featuring an octahedral dummy Fe(II) model, allowed us observing water exchange, which would have escaped attention with the more popular bonded models. Free dioxygen (O2) and l ‐cysteine, added at the active site, could be observed being expelled toward the solvating medium under Random Accelerated Molecular Dynamics (RAMD) along major and minor pathways. Correspondingly, free dioxygen (O2), added to the solvating medium, could be observed to follow the same above pathways in getting to the active site under unbiased MD. For the bulky l ‐cysteine, 600 ns of trajectory were insufficient for protein penetration, and the molecule was stuck at the protein borders. These models pave the way to free energy studies of ligand associations, devised to better clarify how this cardinal enzyme behaves in human metabolism.  相似文献   

2.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

3.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

4.
This work describes molecular dynamics (MD) simulations in aqueous media for the complex of the homotetrameric urate oxidase (UOX) from Aspergillus flavus with xanthine anion ( 5 ) in the presence of dioxygen (O2). After 196.6 ns of trajectory from unrestrained MD, a O2 molecule was observed leaving the bulk solvent to penetrate the enzyme between two subunits, A/C. From here, the same O2 molecule was observed migrating, across subunit C, to the hydrophobic cavity that shares residue V227 with the active site. The latter was finally attained, after 378.3 ns of trajectory, with O2 at a bonding distance from 5 . The reverse same O2 pathway, from 5 to the bulk solvent, was observed as preferred pathway under random acceleration MD (RAMD), where an external, randomly oriented force was acting on O2. Both MD and RAMD simulations revealed several cavities populated by O2 during its migration from the bulk solvent to the active site or backwards. Paying attention to the last hydrophobic cavity that apparently serves as O2 reservoir for the active site, it was noticed that its volume undergoes ample fluctuations during the MD simulation, as expected from the thermal motion of a flexible protein, independently from the particular subunit and no matter whether the cavity is filled or not by O2.  相似文献   

5.
Enzyme engineering plays a central role in the development of biocatalysts for biotechnology, chemical and pharmaceutical manufacturing, and environmental remediation. Rational design of proteins has historically relied on targeting active site residues to confer a protein with desirable catalytic properties. However, additional “hotspots” are also known to exist beyond the active site. Structural elements such as subunit–subunit interactions, entrance tunnels, and flexible loops influence enzyme catalysis and serve as potential “hotspots” for engineering. For the Rieske oxygenases, which use a Rieske cluster and mononuclear iron center to catalyze a challenging set of reactions, these outside of the active site regions are increasingly being shown to drive catalytic outcomes. Therefore, here, we highlight recent work on structurally characterized Rieske oxygenases that implicates architectural pieces inside and outside of the active site as key dictators of catalysis, and we suggest that these features may warrant attention in efforts aimed at Rieske oxygenase engineering.  相似文献   

6.
Addition of KCN to Helix pomatia β-hemocyanin fully saturated with either O2 or CO results in a decrease of the spectroscopic properties of the protein (absorbance at 340 nm and luminescence at 550 nm) due to the displacement of the gaseous ligands (O2 or CO) from the active site. The anionic form of cyanide (CN?) is supposed to bind to the active site; its intrinsic affinity for the protein, as calculated from independent O2 and CO displacement experiments, is between 2 and 6 × 106M?1. The replacement of O2 or CO shows some differences which may be correlated with the different modes of binding at the active site. Thus, while displacement of oxygen by cyanide is hyperbolic, addition of cyanide to carbonylated hemocyanin shows a lag phase. This finding suggests the formation of a mixed liganded complex at the active site. The simultaneous presence of CO and CN? at the active site of hemocyanin is also supported by the experiment in which addition of small amounts of KCN to hemocyanin partially saturated with O2 and CO gives rise to an increase of emission intensity and a concomitant decrease of the O2 absorption band. The mixed-liganded species displays luminescence properties similar to those of CO-saturated hemocyanin, and the formation of the complex is reversible on dialysis or oxygenation.  相似文献   

7.
The protein inhibitor of adenosine 3′,5′-monophosphate-dependent protein kinases from skeletal muscle was subjected to various chemical and enzymatic treatments in an attempt to delineate the part of the molecule responsible for the interaction with the catalytic subunit of the kinase. Only a small portion of the chain seems to be required since thermolysin and staphylococcal protease digestions do not abolish the inhibitory properties. This inhibitory site must contain the essential arginyl side chain(s), whereas lysyl and carboxylic side chains do not appear to be involved in the interaction with the catalytic subunit.Digestion of the COOH-terminus of the inhibitor by carboxypeptidase Y results in a doubling of the Ki value. On the other hand, an inhibitory pentadecapeptide (Ki = 25 nM), presumably NH2-terminal in the entire molecule, could be isolated from a staphylococcal protease digest by means of gel filtration followed by ion exchange on phosphocellulose. The purified inhibitory peptide contains two out of the four arginyl residues present in the entire molecule. The remarkable affinity and specificity of the protein kinase inhibitor for the catalytic subunit of adenosine 3′,5′-monophosphate-dependent protein kinases may thus be tentatively explained on the basic of a two-prong attachment of the inhibitor. The NH2-terminal portion of the chain would bind at the substate binding site, whereas the COOH-terminal part would be held elsewhere.  相似文献   

8.
A combined experimental and theoretical study of the catalytic activity of a [NiFeSe] hydrogenase has been performed by H/D exchange mass spectrometry and molecular dynamics simulations. Hydrogenases are enzymes that catalyze the heterolytic cleavage or production of H2. The [NiFeSe] hydrogenases belong to a subgroup of the [NiFe] enzymes in which a selenocysteine is a ligand of the nickel atom in the active site instead of cysteine. The aim of this research is to determine how much the specific catalytic properties of this hydrogenase are influenced by the replacement of a sulfur by selenium in the coordination of the bimetallic active site versus the changes in the protein structure surrounding the active site. The pH dependence of the D2/H+ exchange activity and the high isotope effect observed in the Michaelis constant for the dihydrogen substrate and in the single exchange/double exchange ratio suggest that a “cage effect” due to the protein structure surrounding the active site is modulating the enzymatic catalysis. This “cage effect” is supported by molecular dynamics simulations of the diffusion of H2 and D2 from the outside to the inside of the protein, which show different accumulation of these substrates in a cavity next to the active site.  相似文献   

9.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

10.
(Na++K+)-ATPase (NKA) comprises two basic α and β subunits: The larger α subunit catalyzes the hydrolysis of ATP for active transport of Na+ and K+ ions across the plasma membrane; the smaller β subunit does not take part in the catalytic process of the enzyme. Little is known about allosteric regulation of the NKA β subunit. Here, we report a surprising finding that extracellular stimuli on the native β1 subunit can generate a significant impact on the catalytic function of NKA. By using a β1 subunit-specific monoclonal antibody JY2948, we found that the JY2948–β1 subunit interaction markedly enhances the catalytic activity of the enzyme and increases the apparent affinity of Na+ and K+ ions for both ouabain-resistant rat NKA and ouabain-sensitive dog NKA. This study provides the first evidence to identify an allosteric binding site residing on the NKA β1 subunit and uncovers the latent allosteric property of the β1 subunit, which remotely controls the NKA catalytic function.  相似文献   

11.
There has been much interest in the chloroplast-encoded large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) as a target for engineering an increase in net CO2 fixation in photosynthesis. Improvements in the enzyme would lead to an increase in the production of food, fiber, and renewable energy. Although the large subunit contains the active site, a family of rbcS nuclear genes encodes the Rubisco small subunits, which can also influence the carboxylation catalytic efficiency and CO2/O2 specificity of the enzyme. To further define the role of the small subunit in Rubisco function, small subunits from spinach, Arabidopsis, and sunflower were assembled with algal large subunits by transformation of a Chlamydomonas reinhardtii mutant that lacks the rbcS gene family. Foreign rbcS cDNAs were successfully expressed in Chlamydomonas by fusing them to a Chlamydomonas rbcS transit peptide sequence engineered to contain rbcS introns. Although plant Rubisco generally has greater CO2/O2 specificity but a lower carboxylation Vmax than Chlamydomonas Rubisco, the hybrid enzymes have 3–11% increases in CO2/O2 specificity and retain near normal Vmax values. Thus, small subunits may make a significant contribution to the overall catalytic performance of Rubisco. Despite having normal amounts of catalytically proficient Rubisco, the hybrid mutant strains display reduced levels of photosynthetic growth and lack chloroplast pyrenoids. It appears that small subunits contain the structural elements responsible for targeting Rubisco to the algal pyrenoid, which is the site where CO2 is concentrated for optimal photosynthesis.  相似文献   

12.
The nucleolar protein Nep1 and its human homologue were previously shown to be involved in the maturation of 18S rRNA and to interfere directly or indirectly with a methylation reaction. Here, we report that the loss-of-function mutation Δsnr57 and multicopy expression of the ribosomal 40S subunit protein 19 (Rps19p) can partially suppress the Saccharomyces cerevisiae Δnep1 growth defect. SnR57 mediates 2′-O-ribose-methylation of G1570 in the 18S rRNA. By performing a three-hybrid screen, we isolated several short RNA sequences with strong binding affinity to Nep1p. All isolated RNAs shared a six-nucleotide consensus motif C/UUCAAC. Furthermore, one of the isolated RNAs exactly corresponded to nucleotides 1553–1577 of the 18S rRNA, which includes G1570, the site of snR57-dependent 18S rRNA methylation. From protein–protein crosslink data and the cryo-EM map of the S. cerevisiae small ribosomal subunit, we suggest that Rps19p is localized in close vicinity to the Nep1p 18S rRNA binding site. Our results suggest that Nep1p binds adjacent to helix 47 of the 18S rRNA and possibly supports the association of Rps19p to pre-ribosomal particles.  相似文献   

13.
Sun L  Harris ME 《RNA (New York, N.Y.)》2007,13(9):1505-1515
The RNA subunit (P RNA) of the bacterial RNase P ribonucleoprotein is a ribozyme that catalyzes the Mg-dependent hydrolysis of pre-tRNA, but it requires an essential protein cofactor (P protein) in vivo that enhances substrate binding affinities and catalytic rates in a substrate dependent manner. Previous studies of Bacillus subtilis RNase P, containing a Type B RNA subunit, showed that its cognate protein subunit increases the affinity of metal ions important for catalysis, but the functional role of these ions is unknown. Here, we demonstrate that the Mg2+ dependence of the catalytic step for Escherichia coli RNase P, which contains a more common Type A RNA subunit, is also modulated by its cognate protein subunit (C5), indicating that this property is fundamental to P protein. To monitor specifically the binding of active site metal ions, we analyzed quantitatively the rescue by Cd2+ of an inhibitory Rp phosphorothioate modification at the pre-tRNA cleavage site. The results show that binding of C5 protein increases the apparent affinity of the rescuing Cd2+, providing evidence that C5 protein enhances metal ion affinity in the active site, and thus is likely to contribute significantly to rate enhancement at physiological metal ion concentrations.  相似文献   

14.
The oxidation of CO catalyzed by clusters of Au11, Au10Pt and Au9Pt2 was investigated using the M06 functional suite of the density functional theory. Au and Pt atoms were described with the double-ζ valence basis set Los Alamos National Laboratory 2-double-z (LanL2DZ), whereas the standard 6-311++G(d,p) basis set was employed for the C and O atoms. Our theoretical model showed that (1) after coordination to Au and Au-Pt cluster, O2 and CO are apparently activated, and Mulliken charges show that the gold atoms in the active sites of Au11 are negatively charged; (2) Au-Pt clusters with 11 atoms can effectively catalyze the oxidation of CO by O2; (3) Au11 exhibits good catalytic performance for the oxidation of CO; (4) oxidation of CO occurs preferably on the Au–Pt active sites in Pt-doped clusters, and the single-center mechanisms are more favorable energetically than the two-center mechanisms; (5) after adsorption, an O2 molecule oxidates two CO molecules via stepwise mechanisms; and (6) the catalytic processes are highly exothermic.  相似文献   

15.
Limited trypsin digestion of type I cAMP-dependent protein kinase holoenzyme results in a proteolytic-resistant Delta(1-72) regulatory subunit core, indicating that interaction between the regulatory and catalytic subunits extends beyond the autoinhibitory site in the R subunit at the NH(2) terminus. Sequence alignment of the two R subunit isoforms, RI and RII, reveals a significantly sequence diversity at this specific region. To determine whether this sequence diversity is functionally important for interaction with the catalytic subunit, specific mutations, R133A and D328A, are introduced into sites adjacent to the active site cleft in the catalytic subunit. While replacing Arg(133) with Ala decreases binding affinity for RII, interaction between the catalytic subunit and RI is not affected. In contrast, mutant C(D328A) showed a decrease in affinity for binding RI while maintaining similar affinities for RII as compared with the wild-type catalytic subunit. These results suggest that sequence immediately NH(2)-terminal to the consensus inhibition site in RI and RII interacts with different sites at the proximal region of the active site cleft in the catalytic subunit. These isoform-specific differences would dictate a significantly different domain organization in the type I and type II holoenzymes.  相似文献   

16.
Aryl-alcohol oxidase (AAO) is a flavoenzyme responsible for activation of O2 to H2O2 in fungal degradation of lignin. The AAO crystal structure shows a buried active site connected to the solvent by a hydrophobic funnel-shaped channel, with Phe-501 and two other aromatic residues forming a narrow bottleneck that prevents the direct access of alcohol substrates. However, ligand diffusion simulations show O2 access to the active site following this channel. Site-directed mutagenesis of Phe-501 yielded a F501A variant with strongly reduced O2 reactivity. However, a variant with increased reactivity, as shown by kinetic constants and steady-state oxidation degree, was obtained by substitution of Phe-501 with tryptophan. The high oxygen catalytic efficiency of F501W, ∼2-fold that of native AAO and ∼120-fold that of F501A, seems related to a higher O2 availability because the turnover number was slightly decreased with respect to the native enzyme. Free diffusion simulations of O2 inside the active-site cavity of AAO (and several in silico Phe-501 variants) yielded >60% O2 population at 3–4 Å from flavin C4a in F501W compared with 44% in AAO and only 14% in F501A. Paradoxically, the O2 reactivity of AAO decreased when the access channel was enlarged and increased when it was constricted by introducing a tryptophan residue. This is because the side chain of Phe-501, contiguous to the catalytic histidine (His-502 in AAO), helps to position O2 at an adequate distance from flavin C4a (and His-502 Nϵ). Phe-501 substitution with a bulkier tryptophan residue resulted in an increase in the O2 reactivity of this flavoenzyme.  相似文献   

17.
The primary energy conversion (QO) site of the cytochrome bc 1 complex is flanked by bothhigh- and low-potential redox cofactors, the [2Fe–2S] cluster and cytochrome b L, respectively.From the sensitivity of the reduced [2Fe–2S] cluster electron paramagnetic resonance (EPR)spectral g x-band and line shape to the degree and type of QO site occupants, we have proposeda double-occupancy model for the QO site by ubiquinone in Rhodobacter capsulatus membranevesicles containing the cytochrome bc 1 complex. Biophysical and biochemical experimentshave confirmed the double occupancy model and from a combination of these results and theavailable cytochrome bc 1 crystal structures we suggest that the two ubiquinone molecules inthe QO site serve distinct catalytic roles. We propose that the strongly bound ubiquinone,termed QOS, is close to the [2Fe–2S] cluster, where it remains tightly associated with the QOsite during turnover, serving as a catalytic cofactor; and the weaker bound ubiquinone, QOW,is distal to the [2Fe–2S] cluster and can exchange with the membrane Qpool on a time scalemuch faster than the turnover, acting as the substrate. The crystallographic data demonstratesthat the FeS subunit can adopt different positions. Our own observations show that theequilibrium position of the reduced FeS subunit is proximal to the QO site. On the basis of this, wealso report preliminary results modeling the electron transfer reactions that can occur in thecytochrome bc 1 complex and show that because of the strong distance dependence of electrontransfer, significant movement of the FeS subunit must occur in order for the complex to beable to turn over at the experimental observed rates.  相似文献   

18.
The interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A1AO ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A1AO ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B. Rotation of the C-terminus and conformational changes in subunit B are initiated upon binding with subunit F causing a perturbation that leads to the migration of ATP from the transition site 1 through an intermediate transition site 2 to the final binding site 3. This mechanism is elucidated on the basis of change in binding affinity for the nucleotide at the specific sites on subunit B upon complexation with subunit F. The change in enthalpy is further explained based on the fluctuating local environment around the binding sites.  相似文献   

19.
Cytochrome c oxidases (Ccoxs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes couple dioxygen (O2) reduction to the generation of a transmembrane electrochemical proton gradient. Despite decades of research and the availability of a large amount of structural and biochemical data available for the A-type Ccox family, little is known about the channel(s) used by O2 to travel from the solvent/membrane to the heme a3-CuB binuclear center (BNC). Moreover, the identification of all possible O2 channels as well as the atomic details of O2 diffusion is essential for the understanding of the working mechanisms of the A-type Ccox. In this work, we determined the O2 distribution within Ccox from Rhodobacter sphaeroides, in the fully reduced state, in order to identify and characterize all the putative O2 channels leading towards the BNC. For that, we use an integrated strategy combining atomistic molecular dynamics (MD) simulations (with and without explicit O2 molecules) and implicit ligand sampling (ILS) calculations. Based on the 3D free energy map for O2 inside Ccox, three channels were identified, all starting in the membrane hydrophobic region and connecting the surface of the protein to the BNC. One of these channels corresponds to the pathway inferred from the X-ray data available, whereas the other two are alternative routes for O2 to reach the BNC. Both alternative O2 channels start in the membrane spanning region and terminate close to Y288I. These channels are a combination of multiple transiently interconnected hydrophobic cavities, whose opening and closure is regulated by the thermal fluctuations of the lining residues. Furthermore, our results show that, in this Ccox, the most likely (energetically preferred) routes for O2 to reach the BNC are the alternative channels, rather than the X-ray inferred pathway.  相似文献   

20.
Immobilized luciferase was studied with regard to its reactivity and subunit functions. When immobilized on a matrix (Sepharose 6B), neither the alpha nor the beta subunit alone exhibited luciferase activity. However, for both subunits (so attached), denaturation followed by renaturation in the presence of the second subunit resulted in the recovery of activity on the matrix. It was thus confirmed that both of the two different subunits (alpha and beta) are required for luciferase activity, even after immobilization. Recovery of activity was approximately the same or slightly less with alpha-immobilized luciferase compared with the beta-immobilized enzyme under our experimental conditions. Generally, immobilized luciferase exhibited both a lower FMNH2 binding affinity and maximum light emission activity in comparison with free native luciferase, but surprisingly, it exhibited no change in the rate constant for the luminescence, this being a measure of the catalytic turnover time. The alpha-subunit-immobilized (renatured with beta) luciferase possessed a lower FMNH2 binding affinity compared with beta-subunit-immobilized (renatured with alpha) luciferase. Since the protein attachment to the CNBr-activated Sepharose 6B occurs by way of an amino group of luciferase, it was suggested that the binding of FMNH2 on luciferase, but not the subsequent catalytic steps, is dependent upon some exposed amino groups on both alpha and beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号