首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
《Autophagy》2013,9(12):1873-1874
The proteasome inhibitor bortezomib has shown remarkable clinical success in the treatment of multiple myeloma. However, the efficacy and mechanism of action of bortezomib in solid tumor malignancies is less well understood. In addition, the use of this first-in-class proteasome inhibitor is limited by several factors, including off-target effects that lead to adverse toxicities. We recently reported the impact and mechanisms of carfilzomib and oprozomib, second-in-class proteasome inhibitors with higher specificities and reduced toxicities, against head and neck squamous cell carcinoma (HNSCC). Carfilzomib and oprozomib potently inhibit HNSCC cell survival and the growth of HNSCC tumors. Both compounds promote upregulation of proapoptotic BIK and antiapoptotic MCL1, which serves to mediate and attenuate, respectively, the killing activities of these proteasome inhibitors. Both compounds also induce complete autophagic flux that is partially dependent on activation of the unfolded protein response (UPR) and upregulation of ATF4. Carfilzomib- and oprozomib-induced autophagy acts to promote HNSCC cell survival. Our study indicates that the therapeutic benefit of these promising proteasome inhibitors may be improved by inhibiting MCL1 expression or autophagy.  相似文献   

2.
Glioblastoma is the most aggressive cerebral gliomas. Despite advances in therapies, the prognosis is still very poor. Therefore, novel therapeutic strategies are required. As a proteasome inhibitor, bortezomib has shown its efficacy as an active antitumor agent against a variety of tumors. However, inhibition of proteasome activity leads to cell death and also induces cell autophagy, and due to the dual roles of autophagy in the survival and death of tumor cells, the effect of inhibition of autophagy on glioblastoma cells remains to be explored. We therefore assessed whether bortezomib is capable of inducing autophagy, and investigated the antitumor effect of bortezomib combined with autophagy inhibitors on human glioblastoma U251 and U87 cells. Cell viability was measured by MTT assay. The expressions of autophagy and apoptosis-related proteins were determined by Western blot analysis. U251 and U87 cells proliferation was inhibited in a dose-dependent manner. Both apoptosis and autophagy induced by bortezomib were observed in human glioblastoma U87 and U251 cells. However, when U251 and U87 cells were co-treated with bortezomib and autophagy inhibitors 3-MA or Atg7 siRNA, the autophagy inhibitors blocked the autophagy in the cells and resulted in a further inhibition of cell proliferation and a further increase in cell apoptosis as compared with that treated with bortezomib alone. These findings indicated that combination of bortezomib and autophagy inhibitors may shed new light on glioblastoma treatment.  相似文献   

3.
4.
Mantle cell lymphoma (MCL) is a distinct histologic subtype of B cell non-Hodgkins lymphoma (NHL) associated with an aggressive clinical course. Inhibition of the ubiquitin-proteasome pathway modulates survival and proliferation signals in MCL and has shown clinical benefit in this disease. This has provided rationale for exploring combination regimens with B-cell selective immunotherapies such as rituximab. In this study, we examined the effects of combined treatment with bortezomib and rituximab on patient-derived MCL cell lines (Jeko, Mino, SP53) and tumor samples from patients with MCL where we validate reversible proteasome inhibition concurrent with cell cycle arrest and additive induction of apoptosis. When MCL cells were exposed to single agent bortezomib or combination bortezomib/rituximab, caspase dependent and independent apoptosis was observed. Single agent bortezomib or rituximab treatment of Mino and Jeko cell lines and patient samples resulted in decreased levels of nuclear NFκB complex(es) capable of binding p65 consensus oligonucleotides, and this decrease was enhanced by the combination. Constitutive activation of the Akt pathway was also diminished with bortezomib alone or in combination with rituximab. On the basis of in vitro data demonstrating additive apoptosis and enhanced NFκB and phosphorylated Akt depletion in MCL with combination bortezomib plus rituximab, a phase II trial of bortezomib-rituximab in patients with relapsed/refractory MCL is underway.Key words: mantle cell lymphoma, proteasome inhibition, CD20, survival and death pathways, apoptosis  相似文献   

5.
6.
Neuroblastoma is the most frequent extracranial solid tumor in children. Here, we report that the proteasome inhibitor bortezomib (PS-341, Velcade) activated the pro-apoptotic BH3-only proteins PMAIP1/Noxa and BBC3/Puma and induced accumulation of anti-apoptotic MCL1 as well as repression of anti-apoptotic BCL2L1/Bcl-xL. Retroviral expression of Bcl-xL, but not of MCL1, prevented apoptosis by bortezomib. Gene knockdown of Noxa by shRNA technology significantly reduced apoptosis, whereas Puma knockdown did not affect cell death kinetics. Immunoprecipitation revealed that endogenous Noxa associated with both, Bcl-xL and MCL1, suggesting that in neuronal cells Noxa can neutralize Bcl-xL, explaining the pronounced protective effect of Bcl-xL. Tetracycline-regulated Noxa expression did not trigger cell death per se but sensitized to bortezomib treatment in a dose-dependent manner. This implies that the induction of Noxa is necessary but not sufficient for bortezomib-induced apoptosis. We conclude that MCL1 steady-state expression levels do not affect sensitivity to proteasome-inhibitor treatment in neuronal tumor cells, and that both the repression of Bcl-xL and the activation of Noxa are necessary for bortezomib-induced cell death.  相似文献   

7.
Human papilloma virus (HPV) infection represents an emerging risk factor in head and neck squamous cell carcinoma (HNSCC). In contrast to HPV-negative HNSCC, most cases of HPV-positive HNSCC encode wild-type p53, although the p53 protein in these cells is rapidly degraded via HPV E6-mediated ubiquitination and subsequent proteasomal degradation. This unique feature of HPV-positive HNSCC has raised hope that liberation of wild-type p53 from the E6 protein may have therapeutic benefit in this disease. Indeed, suppression of E6 expression promotes apoptosis in HPV-positive HNSCC cell lines. However, the role of p53 in mediating this cell death has not been determined. Here, we demonstrate that siRNAs targeting the E6/E7 RNA, or treatment with the proteasome inhibitor bortezomib, resulted in upregulation of functional p53 and p53 gene targets in three HPV-positive HNSCC cell lines, but not in HPV-negative HNSCC cells. Apoptosis induced by E6/E7 siRNA in HPV-positive cells was found to be dependent on p53, while bortezomib-induced cell death was modestly p53-dependent. Treatment with subtoxic doses of bortezomib led to cell cycle arrest in HPV-positive, but not HPV-negative HNSCC cells. Moreover, this cell cycle arrest was mediated by p53 and the cell cycle inhibitor p21, the product of a p53 target gene. Collectively, these findings establish that wild-type p53 encoded by HPV-positive HNSCC cells, once liberated from HPV E6, can play important roles in promoting apoptosis and cell cycle arrest.  相似文献   

8.
《MABS-AUSTIN》2013,5(1):31-40
Mantle cell lymphoma (MCL) is a distinct histologic subtype of B cell non-Hodgkins lymphoma (NHL) associated with an aggressive clinical course. Inhibition of the ubiquitin-proteasome pathway modulates survival and proliferation signals in MCL and has shown clinical benefit in this disease. This has provided rationale for exploring combination regimens with B-cell selective immunotherapies such as rituximab. In this study, we examined the effects of combined treatment with bortezomib and rituximab on patient-derived MCL cell lines (Jeko, Mino, SP53) and tumor samples from patients with MCL where we validate reversible proteasome inhibition concurrent with cell cycle arrest and additive induction of apoptosis. When MCL cells were exposed to single agent bortezomib or combination bortezomib/rituximab, caspase dependent and independent apoptosis was observed. Single agent bortezomib or rituximab treatment of Mino and Jeko cell lines and patient samples resulted in decreased levels of nuclear NF-kB complex(es) capable of binding p65 consensus oligonucleotides, and this decrease was enhanced by the combination. Constitutive activation of the AKT pathway was also diminished with bortezomib alone or in combination with rituximab. On the basis of in vitro data demonstrating additive apoptosis and enhanced NF-kB and phosphorylated AKT depletion in MCL with combination bortezomib plus rituximab, a phase II trial of bortezomib-rituximab in patients with relapsed/refractory MCL is underway.  相似文献   

9.
Histone deacetylase (HDAC) inhibitors and proteasome inhibitors have been approved by the FDA for the treatment of multiple myeloma and lymphoma, respectively, but have not achieved similar activity as single agents in solid tumors. Preclinical studies have demonstrated the activity of the combination of an HDAC inhibitor and a proteasome inhibitor in a variety of tumor models. However, the mechanisms underlying sensitivity and resistance to this combination are not well-understood. This study explores the role of autophagy in adaptive resistance to dual HDAC and proteasome inhibition. Studies focus on ovarian and endometrial gynecologic cancers, two diseases with high mortality and a need for novel treatment approaches. We found that nanomolar concentrations of the proteasome inhibitor ixazomib and HDAC inhibitor romidepsin synergistically induce cell death in the majority of gynecologic cancer cells and patient-derived organoid (PDO) models created using endometrial and ovarian patient tumor tissue. However, some models were not sensitive to this combination, and mechanistic studies implicated autophagy as the main mediator of cell survival in the context of dual HDAC and proteasome inhibition. Whereas the combination of ixazomib and romidepsin reduces autophagy in sensitive gynecologic cancer models, autophagy is induced following drug treatment of resistant cells. Pharmacologic or genetic inhibition of autophagy in resistant cells reverses drug resistance as evidenced by an enhanced anti-tumor response both in vitro and in vivo. Taken together, our findings demonstrate a role for autophagic-mediated cell survival in proteasome inhibitor and HDAC inhibitor-resistant gynecologic cancer cells. These data reveal a new approach to overcome drug resistance by inhibiting the autophagy pathway.Subject terms: Gynaecological cancer, Preclinical research  相似文献   

10.
The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.  相似文献   

11.
12.
Inhibition of proteasome, a proteolytic complex responsible for the degradation of ubiquitinated proteins, has emerged as a powerful strategy for treatment of multiple myeloma (MM), a plasma cell malignancy. First‐in‐class agent, bortezomib, has demonstrated great positive therapeutic efficacy in MM, both in pre‐clinical and in clinical studies. However, despite its high efficiency, a large proportion of patients do not achieve sufficient clinical response. Therefore, the development of a second‐generation of proteasome inhibitors (PIs) with improved pharmacological properties was needed. Recently, several of these new agents have been introduced into clinics including carfilzomib, marizomib and ixazomib. Further, new orally administered second‐generation PI oprozomib is being investigated. This review provides an overview of main mechanisms of action of PIs in MM, focusing on the ongoing development and progress of novel anti‐proteasome therapeutics.  相似文献   

13.
Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5–500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50–500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug.  相似文献   

14.
15.
《Autophagy》2013,9(8):1380-1390
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

16.
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

17.
Melanoma cells depend on sustained proteasomal function for survival. However, bortezomib, the first proteasome inhibitor in clinical use, is not sufficient to improve the poor prognosis of metastatic melanoma patients. Since the proteasome is also expressed in all normal cell compartments, it is unclear how to enhance the efficacy of bortezomib without exacerbating secondary toxicities. Here, we present pharmacological and genetic analyses of mechanisms of resistance to proteasome inhibition. We focused on Bcl-2, Bcl-x(L) and Mcl-1 as main antiapoptotic factors associated with melanoma progression. Despite an efficient blockage of the proteasome, bortezomib could not counteract the intrinsically high levels of Bcl-2 and Bcl-x(L) in melanoma cells. Moreover, Mcl-1 was only downregulated at late time points after treatment. Based on these results, a combination treatment including (-)-gossypol, an inhibitor of Mcl-1/Bcl-2/Bcl-x(L), was designed and proven effective in vivo. Using a specific RNA interference approach, the survival of bortezomib-treated melanoma cells was found to rely primarily on Mcl-1, and to a lesser extent on Bcl-x(L) (but not on Bcl-2). Importantly, neither Mcl-1 nor Bcl-x(L) inactivation affected the viability of normal melanocytes. This hierarchical requirement of Bcl-2 family members for the maintenance of normal and malignant cells offers a therapeutic window to overcome melanoma chemoresistance in a tumor cell-selective manner.  相似文献   

18.
Bortezomib is a novel proteasome inhibitor that has promising antitumor activity against various cancer cells. We have assessed its antitumor activity in non-small cell lung cancer (NSCLC) A549 and H157 cells in vitro where it inhibited cell growth and induced apoptosis, which was associated with cytochrome c release and caspase-3 activation. Bortezomib upregulated autophagic-related proteins, the Atg12–Atg5 complex and LC3-II, which indicated autophagy had occurred. The combination of bortezomib with autophagic inhibitor 3-methyladenine or chloroquine significantly enhanced suppression of cell growth and apoptosis induced by bortezomib in A549 and H157 cells. Our study indicated that inhibition of both proteasome and autophagy has great potential for NSCLC treatment.  相似文献   

19.
Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号