首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(12):1837-1838
Parkinson disease (PD) is the most common neurodegenerative movement disorder and is characterized pathologically by the formation of ubiquitin and SNCA/α-synuclein-containing inclusions (Lewy bodies), dystrophic midbrain dopaminergic (DAergic) terminals, and degeneration of midbrain DAergic neurons. The vast majority of PD occurs sporadically, while approximately 5% of all PD cases are inherited. Genetic mutations of a few genes have been identified as causes of familiar PD, i.e., mutations in SNCA, PARK2/parkin, UCHL1, PARK7/DJ1, PINK1 and LRRK2, leading to DAergic cell death, but variable pathological changes. The evidence supports the hypothesis that several pathogenic mechanisms are likely involved at initial stages of the disease, and eventually they merge to cause parkinsonism. The current challenge facing PD research is to unravel the components in these pathways that contribute to the pathogenesis of PD. Accumulating evidence has implicated dysfunctional autophagy, a regulated lysosomal pathway with a capacity for clearing protein aggregates and cellular organelles, as one of the pathogenic systems contributing to the development of idiopathic PD.  相似文献   

2.
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.  相似文献   

3.
4.
《Autophagy》2013,9(9):1389-1391
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

5.
Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease and is caused by genetics, environmental factors and aging, with few treatments currently available. Apoptosis and macroautophagy/autophagy play critical roles in PD pathogenesis; as such, modulating their balance is a potential treatment strategy. BCL2 (B cell leukemia/lymphoma 2) is a key molecule regulating this balance. Piperlongumine (PLG) is an alkaloid extracted from Piper longum L. that has antiinflammatory and anticancer effects. The present study investigated the protective effects of PLG in rotenone-induced PD cell and mouse models. We found that PLG administration (2 and 4 mg/kg) for 4 wk attenuated motor deficits in mice and prevented the loss of dopaminergic neurons in the substantia nigra induced by oral administration of rotenone (10 mg/kg) for 6 wk. PLG improved cell viability and enhanced mitochondrial function in primary neurons and SK-N-SH cells. These protective effects were exerted via inhibition of apoptosis and induction of autophagy through enhancement of BCL2 phosphorylation at Ser70. These results demonstrate that PLG exerts therapeutic effects in a rotenone-induced PD models by restoring the balance between apoptosis and autophagy.

Abbreviations: 6-OHDA, 6-hydroxydopamine; ACTB, actin, beta; BafA1, bafilomycin A1; BAK1, BCL2-antagonist/killer 1; BAX, BCL2-associated X protein; BCL2, B cell leukemia/lymphoma2; BECN1, Beclin 1, autophagy related; CoQ10, coenzyme Q10; COX4I1/COX IV, cytochrome c oxidase subunit 4I1; CsA, cyclosporine A; ED50, 50% effective dose; FITC, fluorescein isothiocyanate; GFP, green fluorescent protein; HPLC, high-performance liquid chromatography; JC-1, tetraethylbenz-imidazolylcarbocyanine iodide; LC3, microtubule-associated protein 1 light chain3; LC-MS/MS, liquid chromatography-tandem mass spectrometry; LDH, lactate dehydrogenase; l-dopa, 3, 4-dihydroxyphenyl-l-alanine; MAPK8/JNK1, mitogen-activated protein kinase 8; MMP, mitochondrial membrane potential; mPTP, mitochondrial permeability transition pore; mRFP, monomeric red fluorescent protein; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NFE2L2/NRF2, nuclear factor, erythroid derived 2, like 2; PD, Parkinson disease; PLG, piperlongumine; pNA, p-nitroanilide; PI, propidium iodide; PtdIns3K, phosphatidylinositol 3-kinase; PtdIns3P, phosphatidylinositol-3-phosphate; PTX, paclitaxel; Rap, rapamycin; SQSTM1/p62, sequestosome 1; TH, tyrosine hydroxylase; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; WIPI2, WD repeat domain, phosphoinositide interacting 2; ZFYVE1/DFCP1, zinc finger, FYVE domain containing 1.  相似文献   

6.
7.
Mutations in ATP13A2 (PARK9) cause an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia called Kufor-Rakeb Syndrome (KRS). The ATP13A2 gene encodes a transmembrane lysosomal P5-type ATPase (ATP13A2) whose physiological function in mammalian cells, and hence its potential role in Parkinson disease (PD), remains elusive. In this context, we have recently shown that KRS-linked mutations in ATP13A2 leads to several lysosomal alterations in ATP13A2 KRS patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates and diminished lysosomal-mediated clearance of autophagosomes (AP). Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells is able to restore lysosomal function and attenuate cell death. Relevant to PD, we have determined that ATP13A2 levels are decreased in dopaminergic nigral neurons from sporadic PD patients. Interestingly in these patients, the main signal of ATP13A2 is detected in the Lewy bodies. Our results unravel an instrumental role of ATP13A2 in lysosomal function and in cell viability. Altogether, our results validate ATP13A2 as a likely therapeutic target against PD degeneration.  相似文献   

8.
S Matus  K Castillo  C Hetz 《Autophagy》2012,8(6):997-1001
Protein folding stress is a salient feature of the most frequent neurodegenerative diseases. Although the accumulation of abnormally folded proteins is a well-characterized event underlying the pathology, the way cells respond to this phenomenon is not well understood. Signs of endoplasmic reticulum (ER) stress are a common marker of neurodegeneration in many diseases, which may represent two contrasting processes: cell protection events due to activation of adaptive programs, or a chronic stress state that culminates in apoptosis to eliminate irreversibly injured cells. Autophagy has been proposed as a protective mechanism to overcome neurodegeneration that is also modulated by ER stress. In this issue of autophagy Bertrand Mollereau's group provides novel evidence indicating that engagement of nonharmful levels of ER stress protects against experimental Parkinson disease. At the mechanistic level, a homeostatic crosstalk between ER stress signaling and the autophagy pathway was proposed to mediate the therapeutic effects. This study, together with recent findings, supports the involvement of a "hormesis mechanism" to handle degeneration through preconditioning mediated by a dynamic balance between ER stress and autophagy. The implications for aging and future therapeutic development are discussed.  相似文献   

9.
《Autophagy》2013,9(12):2166-2168
Abnormal aggregation of SNCA/α-synuclein plays a crucial role in Parkinson disease (PD) pathogenesis. SNCA levels determine its toxicity, and its accumulation, even to a small extent, may be a risk factor for neurodegeneration. One of the main pathways for SNCA degradation is chaperone-mediated autophagy (CMA), a selective form of autophagy, while aberrant SNCA may act as a CMA inhibitor. In the current punctum we summarize our recent data showing that induction of CMA, via overexpression of the protein controlling its rate-limiting step, the lysosomal receptor LAMP2A, effectively decreases SNCA levels and ameliorates SNCA-induced neurodegeneration, both in neuronal cell culture systems and in the rat brain. Such findings suggest that modulation of LAMP2A and, consequently, CMA, represents a viable therapeutic target for PD and other synucleinopathies where SNCA accumulation and aggregation plays a fundamental role.  相似文献   

10.
Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstrates nonautonomous degeneration, and a spread of pathology. This provides a model consistent with Braak’s hypothesis on progressive PD. The loss of visual function is specific for the G2019S mutation, implying the cause is its increased kinase activity, and is enhanced by increased neuronal activity. These data suggest novel explanations for the variability in animal models of PD. The specificity of visual loss to G2019S, coupled with the differences in neural firing rate, provide an explanation for the variability between people with PD in visual tests.  相似文献   

11.
12.
13.
《Autophagy》2013,9(10):1537-1539
The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LRRK2) gene is related to PD and its implication in autophagy regulation has been described. Our recent work shows that the presence of the G2019S LRRK2 mutation, one of the most prevalent in LRRK2, is accompanied by a deregulation of autophagy basal levels dependent on the MAPK1/3 (ERK2/1) pathway.  相似文献   

14.
The link between the deregulation of autophagy and cell death processes can be essential in the development of several neurodegenerative diseases, such as Parkinson disease (PD). However, the molecular mechanism of deregulation of this degradative process in PD patients is unknown. The leucine-rich repeat kinase 2 (LRRK2) gene is related to PD and its implication in autophagy regulation has been described. Our recent work shows that the presence of the G2019S LRRK2 mutation, one of the most prevalent in LRRK2, is accompanied by a deregulation of autophagy basal levels dependent on the MAPK1/3 (ERK2/1) pathway.  相似文献   

15.
16.
《Autophagy》2013,9(4):692-693
Alterations in autophagy are thought to underlie various neurodegenerative diseases including Parkinson disease (PD). Previous studies have indicated that the PD gene leucine rich repeat kinase 2 (LRRK2) is involved in this process, but its mechanism of action has remained unknown. Our recent work describes how LRRK2 acts through calcium-mediated events originating from acidic stores to regulate autophagy and cell survival, which may give rise to novel therapeutic strategies.  相似文献   

17.
《Autophagy》2013,9(4):701-703
Lafora disease (LD), a fatal neurodegenerative disorder characterized by intracellular inclusions called Lafora bodies (LBs), is caused by recessive loss-of-function mutations in the genes encoding either laforin or malin. Previous studies suggested a role of these proteins in regulating glycogen biosynthesis, in glycogen dephosphorylation and in the modulation of intracellular proteolytic systems. However, the contribution of each of these processes to LD pathogenesis is unclear. Here we review our recent finding that dysfunction of autophagy is a common feature of both laforin- and malin-deficient mice, preceding other pathological manifestations. We propose that autophagy plays a primary role in LD pathogenesis and is a potential target for its treatment.  相似文献   

18.
19.
Wingless/Int (Wnt) signaling pathways are signal transduction mechanisms that have been widely studied In the field of embryogen- esis. Recent work has established a critical role for these pathways in brain development, especially of midbrain dopaminergic neu- rones, However, the fundamental importance of Wnt signaling for the normal function of mature neurones in the adult central nervous system has also lately been demonstrated by an increasing number of studies. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease worldwide and is currently incurable. This debilitating disease is characterized by the progres- sive loss of a subset of midbrain dopaminergic neurones in the substontla nigm leadingto typical extrapyramidal motor symptoms. The aetiology of PD is poorly understood but work performed over the Last two decades has identified a growing number of genetic defects that underlie this condition. Herewe review a growing body of data connecting genes implicated in PD--most notablythe PARKgenes-- with Wnt signaling. These observations provide clues to the normal function of these proteins in healthy neurones and suggest that deregulated Wnt signaling might be a frequent pathomechanlsm leading to PD. These observations have implications for the patho- genesis and treatment of neurodegenerative diseases in general.  相似文献   

20.
Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12–Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12–Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号