共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined impacts of succession on N export from 20 headwater stream systems in the west central Cascades of Oregon,
a region of low anthropogenic N inputs. The seasonal and successional patterns of nitrate (NO3−N) concentrations drove differences in total dissolved N concentrations because ammonium (NH4−N) concentrations were very low (usually < 0.005 mg L−1) and mean dissolved organic nitrogen (DON) concentrations were less variable than nitrate concentrations. In contrast to
studies suggesting that DON levels strongly dominate in pristine watersheds, DON accounted for 24, 52, and 51% of the overall
mean TDN concentration of our young (defined as predominantly in stand initiation and stem exclusion phases), middle-aged
(defined as mixes of mostly understory reinitiation and older phases) and old-growth watersheds, respectively. Although other
studies of cutting in unpolluted forests have suggested a harvest effect lasting 5 years or less, our young successional watersheds
that were all older than 10 years still lost significantly more N, primarily as NO3−N, than did watersheds containing more mature forests, even though all forest floor and mineral soil C:N ratios were well
above levels reported in the literature for leaching of dissolved inorganic nitrogen. The influence of alder may contribute
to these patterns, although hardwood cover was quite low in all watersheds; it is possible that in forested ecosystems with
very low anthropogenic N inputs, even very low alder cover in riparian zones can cause elevated N exports. Only the youngest
watersheds, with the highest nitrate losses, exhibited seasonal patterns of increased summer uptake by vegetation as well
as flushing at the onset of fall freshets. Older watersheds with lower N losses did not exhibit seasonal patterns for any
N species. The results, taken together, suggest a role for both vegetation and hydrology in N retention and loss, and add
to our understanding of N cycling by successional forest ecosystems influenced by disturbance at various spatial and temporal
scales in a region of relatively low anthropogenic N input. 相似文献
2.
Ali Abbaspour Mahmoud Kalbasi Shapoor Hajrasuliha Ahmad Golchin 《Soil & Sediment Contamination》2007,16(6):539-555
Bioavailability and mobility of heavy metals (HMs) in soils are determined by their partitioning between solution and solid-phase and their further redistribution among solid-phase components. A study was undertaken to determine the effects of organic matter (OM) and salinity on cadmium (Cd) and lead (Pb) distribution among soil fractions. Three agricultural soils were treated with 20 mg Cd/kg as Cd (NO3)2·4H2O, 150 mg Pb/kg as Pb (NO3)2, 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl, and then incubated at 60% water holding capacity (60% WHC) and constant temperature (25°C) for 12 weeks. Various fractions of Cd and Pb were extracted from the soils after 2 and 12 w of incubation using a sequential extraction technique. Results showed that in the early stage of incubation (2 w), added Pb were found mainly in the specifically sorbed (SS) and amorphous Fe oxides (AFeO) fractions and added Cd found in SS and Mn oxides (MnO) fractions. Addition of 2% OM decreased the exchangeable (EXC) Pb fraction almost in all soils, whereas it had a different effect on the EXC Cd fraction depending on soil pH. Addition of NaCl increased the EXC Cd fraction in two soils, but it did not alter Pb fractions. At the end of the incubation period, Pb decreased in the EXC and MnO fractions except in the neutral soil and Cd decreased mainly in the SS fraction. 相似文献
3.
Experiments addressing the role of plant species diversity for ecosystem functioning have recently proliferated. Most studies have focused on plant biomass responses. However, microbial processes involved in the production of N2O and the oxidation of atmospheric CH4 could potentially be affected via effects on N cycling, on soil diffusive properties (due to changes in water relations and root architecture) and by more direct interactions of plants with soil microbes. We studied ecosystem-level CH4 and N2O fluxes in experimental communities assembled from two pasture soils and from combinations of 1, 3, 6, 8 or 9 species typical for these pastures. The soils contrasted with respect to texture and fertility. N2O emissions decreased with diversity and increased in the presence of legumes. Soils were sinks for CH4 at all times; legume monocultures were a smaller sink for atmospheric CH4 than non-legume monocultures, but no effect of species richness per se was detected. However, both the exchange of CH4 and N2O strongly depended on plant community composition, and on the interaction of composition with soil type, indicating that the functional role of species and their interactions differed between soils. N2O fluxes were mainly driven by effects on soil nitrate and on nitrification while soil moisture had less of an effect. Soil microbial C and N and N mineralisation rates were not altered. The driver of the interactive soil type×plant community composition-effects was less clear. Because soil methanotrophs may take longer to respond to alterations of N cycling than the 1/2 year treatment in this study, we also tested species richness-effects in two separate 5-year field studies, but results were ambiguous, indicating complex interactions with soil disturbance. In conclusion, our study demonstrates that plant community composition can affect the soil trace gas balance, whereas plant species richness per se was less important; it also indicates a potential link between the botanical composition of plant communities and global warming. 相似文献
4.
Carbon and nitrogen cycling during old-field succession: Constraints on plant and microbial biomass 总被引:10,自引:0,他引:10
Soil C and N dynamics were studied in a sequence of old fields of increasing age to determine how these biogeochemical cycles change during secondary succession. In addition, three different late-successional forests were studied to represent possible "steady state" conditions. Surface soil samples collected from the fields and forests were analyzed for total C, H2O-soluble C, total N, potential net N mineralization, potential net nitrification, and microbial biomass. Above-and belowground plant biomass was estimated within each of the old field sites.Temporal changes in soil organic C, total N and total plant biomass were best described by a gamma function [y =at
b e
ctd
+f] whereas a simple exponential model [y =a(l – e–bt
) + c] provided the best fit to changes in H2O-soluble C, C:N ratio, microbial C, and microbial N. Potential N mineralization and nitrification linearly increased with field age; however, rates were variable among the fields. Microbial biomass was highly correlated to soil C and N pools and well correlated to the standing crop of plant biomass. In turn, plant biomass was highly correlated to pools and rates of N cycling.Patterns of C and N cycling within the old field sites were different from those in a northern hardwood forest and a xeric oak forest; however, nutrient dynamics within an oak savanna were similar to those found in a 60-yr old field. Results suggest that patterns in C and N cycling within the old-field chronosequence were predictable and highly correlated to the accrual of plant and microbial biomass. 相似文献
5.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002. 相似文献
6.
Crop rotation and residue management effects on carbon sequestration,nitrogen cycling and productivity of irrigated rice systems 总被引:31,自引:0,他引:31
Witt C. Cassman K.G. Olk D.C. Biker U. Liboon S.P. Samson M.I. Ottow J.C.G. 《Plant and Soil》2000,225(1-2):263-278
The effects of soil aeration, N fertilizer, and crop residue management on crop performance, soil N supply, organic carbon
(C) and nitrogen (N) content were evaluated in two annual double-crop systems for a 2-year period (1994–1995). In the maize-rice
(M-R) rotation, maize (Zea mays, L.) was grown in aerated soil in the dry season (DS) followed by rice (Oriza sativa, L.) grown in flooded soil in the wet season (WS). In the continuous rice system (R-R), rice was grown in flooded soil in
both the DS and WS. Subplot treatments within cropping-system main plots were N fertilizer rates, including a control without
applied N. In the second year, sub-subplot treatments with early or late crop residue incorporation were initiated after the
1995 DS maize or rice crop. Soil N supply and plant N uptake of 1995 WS rice were sensitive to the timing of residue incorporation.
Early residue corporation improved the congruence between soil N supply and crop demand although the size of this effect was
influenced by the amount and quality of incorporated residue. Grain yields were 13-20% greater with early compared to late
residue incorporation in R-R treatments without applied N or with moderate rates of applied N. Although substitution of maize
for rice in the DS greatly reduced the amount of time soils remained submerged, the direct effects of crop rotation on plant
growth and N uptake in the WS rice crops were small. However, replacement of DS rice by maize caused a reduction in soil C
and N sequestration due to a 33–41% increase in the estimated amount of mineralized C and less N input from biological N fixation
during the DS maize crop. As a result, there was 11–12% more C sequestration and 5–12% more N accumulation in soils continuously
cropped with rice than in the M-R rotation with the greater amounts sequestered in N-fertilized treatments. These results
document the capacity of continuous, irrigated rice systems to sequester C and N during relatively short time periods.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling. 相似文献
8.
Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes 总被引:38,自引:3,他引:38
Although it is generally acknowledged that invasions by exotic plant species represent a major threat to biodiversity and ecosystem stability, little attention has been paid to the potential impacts of these invasions on nutrient cycling processes in the soil. The literature on plant–soil interactions strongly suggests that the introduction of a new plant species, such as an invasive exotic, has the potential to change many components of the carbon (C), nitrogen (N), water, and other cycles of an ecosystem. I have reviewed studies that compare pool sizes and flux rates of the major nutrient cycles in invaded and noninvaded systems for invasions of 56 species. The available data suggest that invasive plant species frequently increase biomass and net primary production, increase N availability, alter N fixation rates, and produce litter with higher decomposition rates than co-occurring natives. However, the opposite patterns also occur, and patterns of difference between exotics and native species show no trends in some other components of nutrient cycles (for example, the size of soil pools of C and N). In some cases, a given species has different effects at different sites, suggesting that the composition of the invaded community and/or environmental factors such as soil type may determine the direction and magnitude of ecosystem-level impacts. Exotic plants alter soil nutrient dynamics by differing from native species in biomass and productivity, tissue chemistry, plant morphology, and phenology. Future research is needed to (a) experimentally test the patterns suggested by this data set; (b) examine fluxes and pools for which few data are available, including whole-site budgets; and (c) determine the magnitude of the difference in plant characteristics and in plant dominance within a community that is needed to alter ecosystem processes. Such research should be an integral component of the evaluation of the impacts of invasive species. 相似文献
9.
Herbivore grazing is increasingly used as a management tool to prevent the dominance of vegetation by tall grasses or trees.
In this report, a model is described that is used to analyze plant-herbivore interactions and their scaling up to landscape
scale. The model can be used to predict effects of herbivory on vegetation development. The model is an ecosystem model including
modules for carbon and nitrogen cycling through plants, soil organic matter, and atmosphere. Plants compete for light and
nitrogen. An herbivory module is included that implements selective foraging by a herbivore in a spatially heterogeneous area.
Simulations were done to analyze the effects of herbivore density on vegetation dynamics, to analyze the impact of soil fertility
on maximum herbivore density, and to analyze effects of herbivore density on landscapes. Two important points come forward
from the model. Maximum herbivore abundance shows a hump-shaped curve along a soil fertility gradient. At higher soil fertility,
light competition becomes more important. Herbivory interferes with plant competition, giving the tall, less palatable species
a competitive advantage and thereby reducing the food quality and availability and hence the carrying capacity of the area.
At a landscape scale, herbivory leads to increased heterogeneity. This increased heterogeneity may increase carrying capacity.
The implications of these points for nature management are discussed.
Received 13 May 1998; accepted 23 November 1998. 相似文献
10.
Evidence that Soil Carbon Pool Determines Susceptibility of Semi-Natural Ecosystems to Elevated Nitrogen Leaching 总被引:1,自引:0,他引:1
Christopher D. Evans Brian Reynolds Alan Jenkins Rachel C. Helliwell Christopher J. Curtis Christine L. Goodale Robert C. Ferrier Bridget A. Emmett Michael G. Pilkington Simon J. M. Caporn Jacky A. Carroll David Norris Jennifer Davies Malcolm C. Coull 《Ecosystems》2006,9(3):453-462
Deposition of reactive nitrogen (N) compounds has the potential to cause severe damage to sensitive soils and waters, but
the process of ‘nitrogen saturation’ is difficult to demonstrate or predict. This study compares outputs from a simple carbon–nitrogen
model with observations of (1) regional- and catchment-scale relationships between surface water nitrate and dissolved organic
carbon (DOC), as an indicator of catchment carbon (C) pool; (2) inter-regional variations in soil C/N ratios; and (3) plot
scale soil and leachate response to long-term N additions, for a range of UK moorlands. Results suggest that the simple model
applied can effectively reproduce observed patterns, and that organic soil C stores provide a critical control on catchment
susceptibility to enhanced N leaching, leading to high spatial variability in the extent and severity of current damage within
regions of relatively uniform deposition. Results also support the hypothesis that the N richness of organic soils, expressed
as C/N ratio, provides an effective indicator of soil susceptibility to enhanced N leaching. The extent to which current C/N
is influenced by N deposition, as opposed to factors such as climate and vegetation type, cannot be unequivocally determined
on the basis of spatial data. However, N addition experiments at moorland sites have shown a reduction in organic soil C/N.
A full understanding of the mechanisms of N-enrichment of soils and waters is essential to the assessment of current sensitivity
to, and prediction of future damage from, globally increasing reactive nitrogen deposition. 相似文献
11.
Tree Species Effects on Soil Organic Matter Dynamics: The Role of Soil Cation Composition 总被引:2,自引:0,他引:2
Sarah E. Hobbie Megan Ogdahl Jon Chorover Oliver A. Chadwick Jacek Oleksyn Roma Zytkowiak Peter B. Reich 《Ecosystems》2007,10(6):999-1018
Abstract We studied the influence of tree species on soil carbon and nitrogen (N) dynamics in a common garden of replicated monocultures of fourteen angiosperm and gymnosperm, broadleaf and needleleaf species in southwestern Poland. We hypothesized that species would influence soil organic matter (SOM) decomposition primarily via effects on biogeochemical recalcitrance, with species having tissues with high lignin concentrations retarding rates of decomposition in the O and A horizons. Additionally, because prior work demonstrated substantial divergence in foliar and soil base cation concentrations and soil pH among species, we hypothesized that species would influence chemical stabilization of SOM via cation bridging to mineral surfaces in the A-horizon. Our hypotheses were only partially supported: SOM decomposition and microbial biomass were unrelated to plant tissue lignin concentrations, but in the mineral horizon, were significantly negatively related to the percentage of the cation exchange complex (CEC) occupied by polyvalent acidic (hydrolyzing) cations (Al and Fe), likely because these cations stabilize SOM via cation bridging and flocculation and/or because of inhibitory effects of Al or low pH on decomposers. Percent CEC occupied by exchangeable Al and Fe was in turn related to both soil clay content (a parent material characteristic) and root Ca concentrations (a species characteristic). In contrast, species influenced soil N dynamics largely via variation in tissue N concentration. In both laboratory and in situ assays, species having high-N roots exhibited faster rates of net N mineralization and nitrification. Nitrification:mineralization ratios were greater, though, under species with high exchangeable soil Ca2+. Our results indicate that tree species contribute to variation in SOM dynamics, even in the mineral soil horizons. To our knowledge the influence of tree species on SOM decomposition via cation biogeochemistry has not been demonstrated previously, but could be important in other poorly buffered systems dominated by tree species that differ in cation nutrition or that are influenced by acidic deposition. 相似文献
12.
To increase our insight into the above- and belowground N flows in grass and grass-clover swards relations between crop and soil parameters were studied in a cutting trial with perennial ryegrass (Lolium perenne) monocultures and ryegrass–white clover (Trifolium repens) mixtures. The effects of clover cultivar on herbage yield, the amount of clover-derived nitrogen, apparent N transfer to companion grass, dynamics of N and organic matter in the soil were estimated.The grass monocultures had very low DM yields (<2.1 t ha-1) and a low N concentration in the harvested herbage. During 1992–1995 the annual herbage DM yield in the mixtures ranged from 7.0 to 14.3 t ha-1, the white clover DM yield from 2.4 to 11.2 t ha-1 and the mean annual clover content in the herbage DM harvested from 34 to 78%. Mixtures with the large-leaved clover cv. Alice yielded significantly more herbage and clover DM and had a higher clover content than mixtures with small/medium-leaved cvs. Gwenda and Retor. Grass cultivar did not consistently affect yield, botanical composition or soil characteristics.The apparent N2 fixation was very high, ranging from 150 to 545 kg N ha-1 in the different mixtures. For each tonne of clover DM in the harvested herbage 49 to 63 kg N was harvested, while the apparent N transfer from clover to grass varied between 55 and 113 kg N ha-1 year-1.The net N mineralization rate was lower under monocultures than under mixtures. The C mineralization and the amounts of C and N in active soil organic matter fractions were similar for monocultures and mixtures, but the C:N ratio of the active soil organic matter fractions were higher under grass than under mixtures. This explains the lower N mineralization under grass. 相似文献
13.
Richard D. Boone 《Plant and Soil》1990,128(2):191-198
Net nitrogen (N) mineralization in situ and N mineralization potential (N0) over one complete year (1986–1987) were examined for a conventionally managed silage cornfield that received at least 235 kg fertilizer N ha-1. Net N mineralization at the site, measured by sequential in situ polyethylene-bag incubations, totaled –54 kg N ha-1 yr-1, and –31 kg N ha-1 over the May-to-August growing season. Nitrogen mineralization potential of the soil organic matter (SOM), measured by laboratory anaerobic incubations, was positive uniformly and varied with month of sample collection. The soil gained 72 kg inorganic N ha-1 from April to October, principally because of a fall manuring, only 7 kg N ha-1 from April to September. The in situ incubations, likely more representative of the balance between N mineralization and immobilization under N-fertilized conditions, suggest that SOM at the site is accumulating N.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA.Contribution from the Department of Forestry and Wildlife Management, University of Massachusetts, Amherst, MA 01003, USA. 相似文献
14.
Stable Nitrogen and Carbon Pools in Grassland Soils of Variable Texture and Carbon Content 总被引:2,自引:0,他引:2
Nitrogen (N) inputs to many terrestrial ecosystems are increasing, and most of these inputs are sequestered in soil organic
matter within 1–3 years. Rapid (minutes to days) immobilization focused previous N retention research on actively cycling
plant, microbial, and inorganic N pools. However, most ecosystem N resides in soil organic matter that is not rapidly cycled.
This large, stable soil N pool may be an important sink for elevated N inputs. In this study, we measured the capacity of
grassland soils to retain 15N in a pool that was not mineralized by microorganisms during 1-year laboratory incubations (called “the stable pool”). We
added two levels (2.5 and 50 g N m−2) of 15NH4
+ tracer to 60 field plots on coarse- and fine-textured soils along a soil carbon (C) gradient from Texas to Montana, USA.
We hypothesized that stable tracer 15N retention and stable bulk soil (native + tracer) N pools would be positively correlated with soil clay and C content and
stable soil C pools (C not respired during the incubation). Two growing seasons after the 15N addition, soils (0- to 20-cm depth) contained 71% and 26% of the tracer added to low- and high-N treatments, respectively.
In both N treatments, 50% of the tracer retained in soil was stable. Total soil C (r
2
= 0.72), stable soil C (r
2
= 0.68), and soil clay content (r
2
= 0.27) were correlated with stable bulk soil N pools, but not with stable 15N retention. We conclude that on annual time scales, substantial quantities of N are incorporated into stable organic pools
that are not readily susceptible to microbial remineralization or subsequent plant uptake, leaching losses, or gaseous losses.
Stable N formation may be an important pathway by which rapid soil N immobilization translates into long-term N retention.
Received 2 April 2001; accepted 12 November 2001. 相似文献
15.
Xeric succulent thicket in the Eastern Cape, South Africa has been used for farming goats since the early 1900s. This habitat is characterised by a dense cover of the succulent bush Portulacaria afra and by a warm, semi-arid climate with evenly distributed annual rainfall of 250–400 mm. Heavy browsing by goats results in the loss of P. afra and transforms the thicket to an open savanna dominated by annual grasses. Eight fence-line comparisons between thicket and savanna were used to investigate differences in soil quality associated with the vegetation change. Composite soil samples were taken to a depth of 10 cm from 1 ha plots on either side of the fence-line. Associated with the change from thicket to savanna, a significant decrease (paired t-test, P < 0.05) was found in total C (respective means of 5.6 vs. 3.0%), total N (0.33 vs. 0.24%), labile C (2.8 vs. 1.5%), CO2 flux (1.9 vs. 0.5 µmol m–2 s–1), soil respiration in the laboratory (144 vs. 79 ng C kg–1 s–1), (NH4)OAc-extractable Mg (55 vs. 28 mmolc kg–1), and laboratory infiltration rate (51 vs. 19 mm h–1). In the same direction there was a similarly significant increase in modulus of rupture (16 vs. 34 kPa), water-soluble Ca (2.3 vs. 3.4 mmolc kg–1) and pH (6.7 vs. 7.7). The soil C content of 5.6% in thicket is surprisingly high in this warm, semi-arid climate and suggests that the dense P. afra bush strongly regulates soil organic matter through microclimate, erosion control, litter quantity and perhaps chemistry. Savanna soils had a greater tendency to crust (as evident in a lower rate of laboratory infiltration and greater modulus of rupture) than thicket soils. This was attributed to their lower organic matter content, which probably reduced aggregate stability. Savannas are likely to be more prone to runoff and erosion not only because of sparser vegetation but also because of a decline in soil quality. 相似文献
16.
Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics 总被引:2,自引:0,他引:2
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil
moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests
previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest.
N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest
N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The
mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively
to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf
litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates
of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the
availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical
land use or varying successional dynamics played an important role in determining N availability; and (c) the established
ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified.
Received 22 February 2000; accepted 6 September 2000. 相似文献
17.
中国不同气候带植被挥发性有机化合物通量与生态系统演替的相关性 总被引:2,自引:0,他引:2
从群落水平和生态系统演替的角度对中国热带,亚热带和温带生态系统植物挥发性有机化合物(VOC)通量的研究表明,异戊二烯通量呈现出在生态系统演替的早期到中期阶段随着演替的的进行而升高,在先锋性灌木和乔木阶段达到高峰,然后又随着演替的发展而逐渐下降的演替格局,而其他VOC通量则有随着演替的进行而上升的趋势。生态系统不同演替阶段异戊二烯通量的变化可能与植物获取养分氮有关,根据植物VOC释放通量的生态演替格局,可以建立全球陆地生态系统的VOC模型,对大气化学过程中的VOC时空动态进行很好的模拟。 相似文献
18.
Fires in the tallgrass prairie are frequent and significantly alter nutrient cycling processes. We evaluated the short-term
changes in plant production and microbial activity due to fire and the long-term consequences of annual burning on soil organic
matter (SOM), plant production, and nutrient cycling using a combination of field, laboratory, and modeling studies. In the
short-term, fire in the tallgrass prairie enhances microbial activity, increases both above-and belowground plant production,
and increases nitrogen use efficiency (NUE). However, repeated annual burning results in greater inputs of lower quality plant
residues causing a significant reduction in soil organic N, lower microbial biomass, lower N availability, and higher C:N
ratios in SOM. Changes in amount and quality of below-ground inputs increased N immobilization and resulted in no net increases
in N availability with burning. This response occurred rapidly (e.g., within two years) and persisted during 50 years of annual
burning. Plant production at a long-term burned site was not adversely affected due to shifts in plant NUE and carbon allocation.
Modeling results indicate that the tallgrass ecosystem responds to the combined changes in plant resource allocation and NUE.
No single factor dominates the impact of fire on tallgrass plant production. 相似文献
19.
Soil Carbon Dioxide Flux in Antarctic Dry Valley Ecosystems 总被引:2,自引:0,他引:2
The Antarctic dry valleys of southern Victoria Land are extreme desert environments where abiotic factors, such as temperature gradients, parent material, and soil water dynamics, may have a significant influence on soil carbon dioxide (CO2) flux. Previous measurements of soil respiration have demonstrated very low rates of CO2 efflux, barely above detection limits. We employed a modified infrared gas-analyzer system that enabled detection of smaller changes in CO2 concentration in the field than previously possible. We measured diel CO2 fluxes and monitored soil microclimate at three sites in Taylor Valley. Soil CO2 flux ranged from –0.1 to 0.15 mol m–2 s–1. At two of the three sites, we detected a physically driven flux associated with diel variability in soil temperature. At these sites, CO2 uptake (negative flux) was associated with dropping soil temperatures, whereas CO2 evolution (positive flux) was associated with increases in soil temperature. These observations are corroborated by laboratory experiments that suggest that CO2 flux is influenced by physically driven processes. We discuss four potential mechanisms that may contribute to physically driven gas exchange. Our results suggest there are strong interactions between biological and abiotic controls over soil CO2 flux in terrestrial ecosystems of the Antarctic dry valleys, and that the magnitude of either may dominate depending on the soil environment and biological activity. 相似文献
20.
José M. Grünzweig Stephen D. Sparrow† Dan Yakir‡ F. Stuart Chapin III 《Global Change Biology》2004,10(4):452-472
Climate warming is most pronounced at high latitudes, which could result in the intensification of the extensively cultivated areas in the boreal zone and could further enhance rates of forest clearing in the coming decades. Using paired forest‐field sampling and a chronosequence approach, we investigated the effect of conversion of boreal forest to agriculture on carbon (C) and nitrogen (N) dynamics in interior Alaska. Chronosequences showed large soil C losses during the first two decades following deforestation, with mean C stocks in agricultural soils being 44% or 8.3 kg m?2 lower than C stocks in original forest soils. This suggests that soil C losses from land‐use change in the boreal region may be greater than those in other biomes. Analyses of changes in stable C isotopes and in quality of soil organic matter showed that organic C was lost from soils by combustion of cleared forest material, decomposition of organic matter and possibly erosion. Chronosequences indicated an increase in C storage during later decades after forest clearing, with 60‐year‐old grassland showing net ecosystem C gain of 2.1 kg m?2 over the original forest. This increase in C stock resulted probably from a combination of large C inputs from belowground biomass and low C losses due to a small original forest soil C stock and low tillage frequency. Reductions in soil N stocks caused by land‐use change were smaller than reductions in C stocks (34% or 0.31 kg m?2), resulting in lower C/N ratios in field compared with forest mineral soils, despite the occasional incorporation of high‐C forest‐floor material into field soils. Carbon mineralization per unit of mineralized N was considerably higher in forests than in fields, which could indicate that decomposition rates are more sensitive in forest soils than in field soils to inorganic N addition (e.g. by increased N deposition from the atmosphere). If forest conversion to agriculture becomes more widespread in the boreal region, the resulting C losses (51% or 11.2 kg m?2 at the ecosystem level in this study) will induce a positive feedback to climatic warming and additional land‐use change. However, by selecting relatively C‐poor soils and by implementing management practices that preserve C, losses of C from soils can be reduced. 相似文献