首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleotide sequence of the 18S rDNA coding gene in the ascomycetes parasitic fungus Isaria japonica contains a group I intron with a length of 379 nucleotides. The identification of the DNA sequence as a group I intron is based on its sequence homology to other fungal group I introns. Its group I intron contained the highly conserved sequence elements P, Q, R, and S found in other group I introns. Surprisingly, the intron sequence of I. japonica is more similar to that of Ustilago maydis than to the one found in Sclerotinia sclerotiorum. This is in contrast to the sequence identity found on the neighboring rDNA. This is an interesting finding and suggests a horizontal transfer of group I intron sequences. Received: 19 September 1997 / Accepted: 10 September 1998  相似文献   

3.
The sequences of the entire blue opsin gene in the squirrel monkey (Saimiri boliviensis) and the five introns of the human blue opsin gene were obtained. Intron 3 of these genes contains an Alu sequence and intron 4 contains a partial mer13 sequence. A comparison of the squirrel monkey opsin sequence with published mammalian opsin sequences shows that features believed to be functionally critical are all conserved. However, the blue opsin has evolved twice as fast as rhodopsin and is only as conservative as the β globin, which has evolved at the average rate of mammalian proteins. Interestingly, the interhelical loops are, on average, actually more conservative than the transmembrane α helical regions. The introns of the blue opsin gene have evolved at the average rate of introns in primate genes. Received: 5 August 1996 / Accepted: 2 October 1996  相似文献   

4.
While the two amylase genes of Drosophila melanogaster are intronless, the three genes of D. pseudoobscura harbor a short intron. This raises the question of the common structure of the Amy gene in Drosophila species. We have investigated the presence or absence of an intron in the amylase genes of 150 species of Drosophilids. Using polymerase chain reaction (PCR), we have amplified a region that surrounds the intron site reported in D. pseudoobscura and a few other species. The results revealed that most species contain an intron, with a variable size ranging from 50 to 750 bp, although the very majoritary size was around 60–80 bp. Several species belonging to different lineages were found to lack an intron. This loss of intervening sequence was likely due to evolutionarily independent and rather frequent events. Some other species had both types of genes: In the obscura group, and to a lesser extent in the ananassae subgroup, intronless copies had much diverged from intron-containing genes. Base composition of short introns was found to be variable and correlated with that of the surrounding exons, whereas long introns were all A-T rich. We have extended our study to non-Drosophilid insects. In species from other orders of Holometaboles, Lepidoptera and Hymenoptera, an intron was found at an identical position in the Amy gene, suggesting that the intron was ancestral. Received: 23 October 1995 / Accepted: 5 March 1996  相似文献   

5.
Ferritin, a protein widespread in nature, concentrates iron ∼1011–1012-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n= 7) is higher than in animals (n= 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling. Received: 25 July 1995 / Accepted: 3 October 1995  相似文献   

6.
Green algae and land plants trace their evolutionary history to a unique common ancestor. This ``green lineage' is phylogenetically subdivided into two distinct assemblages, the Chlorophyta and the Streptophyta. The Chlorophyta includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinopohyceae, whereas the Streptophyta includes the Charophyceae plus the bryophytes, ferns, and all other multicellular land plants (Embryophyta). The Prasinophyceae is believed to contain the earliest divergences within the green lineage. Phylogenetic analyses using rDNA sequences identify the prasinophytes as a paraphyletic taxon that diverges at the base of the Chlorophyta. rDNA analyses, however, provide ambiguous results regarding the identity of the flagellate ancestor of the Streptophyta. We have sequenced the actin-encoding cDNAs from Scherffelia dubia (Prasinophyceae), Coleochaete scutata, Spirogyra sp. (Charophyceae), and the single-copy actin gene from Mesostigma viride (Prasinophyceae). Phylogenetic analyses show Mesostigma to be the earliest divergence within the Streptophyta and provide direct evidence for a scaly, biflagellate, unicellular ancestor for this lineage. This result is supported by the existence of two conserved actin-coding region introns (positions 20-3, 152-1), and one intron in the 5′-untranslated region of the actin gene shared by Mesostigma and the embryophytes. Received: 10 July 1997 / Accepted: 9 April 1998  相似文献   

7.
Sequences were obtained from five species of rodents that are orthologous to an H2a histone pseudogene from Mus musculus. The pseudogene is part of the cluster of replication-dependent histone genes found on Mus musculus chromosome 13. Comparative analysis of these five sequences together with the previously published sequence from M. musculus shows that this gene has likely been a pseudogene throughout the evolution of the genus Mus, while the gene from Rattus norvegicus is likely functional. Three large (>20 bp) deletions were found among the Mus pseudogenes, a feature that is very unusual compared to surveys of processed pseudogenes. In addition, there are two single-base deletions and one 4-bp insertion among the Mus pseudogenes. The species distributions of one of the large deletions and the 4-bp insertion require either independent insertions of an identical sequence, independent deletions with identical boundaries, or a deletion followed by precise reintegration of the original sequence. The evidence favors the hypothesis of multiple deletions with identical boundaries. The ``coding' regions of the Mus pseudogenes show a much reduced level of among-species variability in the 3′ half of the pseudogene, compared both to the 5′ half and to flanking sequences. This supports a hypothesis that the 3′ end of the pseudogene is the target of frequent gene conversion by functional H2a genes. Received: 1 April 1997 / Accepted: 12 June 1997  相似文献   

8.
Characterization of Repetitive DNA Elements in Arabidopsis   总被引:1,自引:0,他引:1  
We have applied computational methods to the available database and identified several families of repetitive DNA elements in the Arabidopsis thaliana genome. While some of the elements have features expected of either miniature inverted-repeat transposable elements (MITEs) or retrotransposons, the most abundant class of repetitive elements, the AthE1 family, is structurally related to neither. The AthE1 family members are defined by conserved 5′ and 3′ sequences, but these terminal sequences do not represent either inverted or direct repeats. AthE1 family members with greater than 98% identity are easily identified on different Arabidopsis chromosomes. Similar to nonautonomous DNA-based transposon families, the AthE1 family contains members in which the conserved terminal domains flank unrelated sequences. The primary utility of characterizing repetitive sequences is in defining, at least in part, the evolutionary architecture of specific Arabidopsis loci. The repetitive elements described here make up approximately 1% of the available Arabidopsis thaliana genomic sequence. Received: 13 October 1998 / Accepted: 30 December 1998  相似文献   

9.
Studies of the distribution of the three group I introns (intron A, intron T, and intron AT) in the 26S rDNA of Gaeumannomyces graminis had suggested that they were transferred to a common ancestor of G. graminis var. avenae and var. tritici after it had branched off from var. graminis. Intron AT and intron A exhibited vertical inheritance and coevolved in concert with their hosts. Intron loss could occur after its acquisition. Loss of any one of the three introns could occur in var. tritici whereas only loss of intron T had been found in the majority of var. avenae isolates. The existence of isolates of var. tritici and var. avenae with three introns suggested that intron loss could be reversed by intron acquisition and that the whole process is a dynamic one. This process of intron acquisition and intron loss reached different equilibrium points for different varieties and subgroups, which explained the irregular distribution of these introns in G. graminis. Each of the three group I introns was more closely related to other intron sequences that share the same insertion point in the 26S rDNA than to each other. These introns in distantly related organisms appeared to have a common ancestry. This system had provided a good model for studies on both the lateral transfer and common ancestry of group I introns in the 26S rRNA genes. Received: 17 May 1996 / Accepted: 14 January 1997  相似文献   

10.
Introns are generally believed to evolve too rapidly and too erratically to be of much use in phylogenetic reconstructions. Few phylogenetically informative intron sequences are available, however, to ascertain the validity of this supposition. In the present study the supposition was tested on the example of the mammalian class II major histocompatibility complex (Mhc) genes of the DRB family. Since the Mhc genes evolve under balancing selection and are believed to recombine or rearrange frequently, the evolution of their introns could be expected to be particularly rapid and subject to scrambling. Sequences of intron 4 and 5 DRB genes were obtained from polymerase chain reaction-amplified fragments of genomic DNA from representatives of six eutherian orders—Primates, Scandentia, Chiroptera, Dermoptera, Lagomorpha, and Insectivora. Although short stretches of the introns have indeed proved to be unalignable, the bulk of the intron sequences from all six orders, spanning >85 million years (my) of evolution, could be aligned and used in a study of the tempo and mode of intron evolution. The analysis has revealed the Mhc introns to evolve at a rate similar to that of other genes and of synonymous sites of non-Mhc genes. No evidence of homogenization or large-scale scrambling of the intron sequences could be found. The Mhc introns apparently evolve largely by point mutations and insertions/deletions. The phylogenetic signals contained in the intron sequences could be used to identify Scandentia as the sister group of Primates, to support the existence of the Archonta superorder, and to confirm the monophyly of the Chiroptera. Received: 26 October 1998 / Accepted: 21 December 1998  相似文献   

11.
The extracellular hemoglobins of cladocerans derive from the aggregation of 12 two-domain globin subunits that are apparently encoded by four genes. This study establishes that at least some of these genes occur as a tandem array in both Daphnia magna and Daphnia exilis. The genes share a uniform structure; a bridge intron separates two globin domains which each include three exons and two introns. Introns are small, averaging just 77 bp, but a longer sequence (2.2–3.2 kb) separates adjacent globin genes. A survey of structural diversity in globin genes from other daphniids revealed three independent cases of intron loss, but exon lengths were identical, excepting a 3-bp insertion in exon 5 of Simocephalus. Heterogeneity in the extent of nucleotide divergence was marked among exons, largely as a result of the pronounced diversification of the terminal exon. This variation reflected, in part, varying exposure to concerted evolution. Conversion events were frequent in exons 1–4 but were absent from exons 5 and 6. Because of this difference, the results of phylogenetic analyses were strongly affected by the sequences employed in this construction. Phylogenies based on total nucleotide divergence in exons 1–4 revealed affinities among all genes isolated from a single species, reflecting the impact of gene conversion events. In contrast, phylogenies based on total nucleotide divergence in exons 5 and 6 revealed affinities among orthologous genes from different taxa. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

12.
A 2550-bp portion of the mitochondrial genome of a Demosponge, genus Tetilla, was amplified from whole genomic DNA extract and sequenced. The sequence was found to code for the 3′ end of the 16S rRNA gene, cytochrome c oxidase subunit II, a lysine tRNA, ATPase subunit 8, and a 5′ portion of ATPase subunit 6. The Porifera cluster distinctly within the eumetazoan radiation, as a sister group to the Cnidaria. Also, the mitochondrial genetic code of this sponge is likely identical to that found in the Cnidaria. Both the full COII DNA and protein sequences and a portion of the 16S rRNA gene were found to possess a striking similarity to published Cnidarian mtDNA sequences, allying the Porifera more closely to the Cnidaria than to any other metazoan phylum. The gene arrangement, COII—tRNALys—ATP8—ATP6, is observed in many Eumetazoan phyla and is apparently ancestral in the metazoa. Received: 24 November 1997 / Accepted: 14 September 1998  相似文献   

13.
The Peperomia polybotrya coxI gene intron is the only currently reported group I intron in a vascular plant mitochondrial genome and it likely originated by horizontal transfer from a fungal donor. We provide a clearer picture of the horizontal transfer and a portrayal of the evolution of the group I intron since it was gained by the Peperomia mitochondrial genome. The intron was transferred recently in terms of plant evolution, being restricted to the single genus Peperomia among the order Piperales. Additional support is presented for the suggestion that a recombination/repair mechanism was used by the intron for integration into the Peperomia mitochondrial genome, as a perfect 1:1 correspondence exists between the intron's presence in a species and the presence of divergent nucleotide markers flanking the intron insertion site. Sequencing of coxI introns from additional Peperomia species revealed that several mutations have occurred in the intron since the horizontal transfer, but sequence alterations have not caused frameshifts or created stop codons in the intronic open reading frame. In addition, two coxI pseudogenes in Peperomia cubensis were discovered that lack a large region of coxI exon 2 and contain a truncated version of the group I intron that likely cannot be spliced out. Received: 29 May 1997 / Accepted: 1 November 1997  相似文献   

14.
To study the evolution of human X-linked red and green opsin genes, genomic sequences in large regions of the two genes were compared. The divergences in introns 3, 4, and 5 and the 3′ flanking sequence of the two genes are significantly lower than those in exons 4 and 5. The homogenization mechanism of introns and the 3′ flanking sequence of human red and green opsin genes is probably gene conversion, which also occurred in exons 1 and 6. At least one gene conversion event occurred in each of three regions (1, 3, and 5) in the sequences compared. In conclusion, gene conversion has occurred frequently between human red and green opsin genes, but exons 2, 3, 4, and 5 have been maintained distinct between the two genes by natural selection. Received: 29 September 1997 / Accepted: 29 September 1997  相似文献   

15.
Synonymous codon choices vary considerably among Schistosoma mansoni genes. Principal components analysis detects a single major trend among genes, which highly correlates with GC content in third codon positions and exons, but does not discriminate among putatively highly and lowly expressed genes. The effective number of codons used in each gene, and its distribution when plotted against GC3, suggests that codon usage is shaped mainly by mutational biases. The GC content of exons, GC3, 5′, 3′, and flanking (5′+ 3′+ introns) regions are all correlated among them, suggesting that variations in GC content may exist among different regions of the S. mansoni genome. We propose that this genome structure might be among the most important factors shaping codon usage in this species, although the action of selection on certain sequences cannot be excluded. Received: 10 March 1997 / Accepted: 27 June 1997  相似文献   

16.
We characterized a full-length gene encoding wild silkmoth Antheraea pernyi fibroin (Ap-fibroin) to clarify the conformation of repetitive sequences. The gene consisted of a first exon encoding 14 amino acid residues, a short intron (120 bp), and a long second exon encoding 2,625 amino acid residues. Three amino acids, alanine, glycine, and serine, amounted to 81% of the Ap-fibroin sequence. The Ap-fibroin, except for 155 residues of the amino terminus, was composed of 80 tandemly arranged polyalanine-containing units (motifs). A motif was a doublet of a polyalanine block (PAB) and a nonpolyalanine block (NPAB). Seventy-eight of the 80 motifs were classified into four types based on differences in the NPAB sequences. Although respective motifs were significantly conserved, many rearrangements were observed within the second exon, i.e., the triplication of a 558-bp-long sequence and other duplication events of shorter sequences. Chi-like sequences, GCTGGAG, might contribute to the rearrangement within the gene as described in human minisatellite loci, because they were found at specific sites of NPAB-encoding sequences in three of four types of motifs. The present results support the idea that the Ap-fibroin gene is unstable like minisatellite sequences and that the evolution of this gene is strongly associated with its instability. Received: 18 February 2000 / Accepted: 30 June 2000  相似文献   

17.
We have determined the genomic structure of an integrin β-subunit gene from the coral, Acropora millepora. The coding region of the gene contains 26 introns, spaced relatively uniformly, and this is significantly more than have been found in any integrin β-subunit genes from higher animals. Twenty-five of the 26 coral introns are also found in a β-subunit gene from at least one other phylum, indicating that the coral introns are ancestral. While there are some suggestions of intron gain or sliding, the predominant theme seen in the homologues from higher animals is extensive intron loss. The coral baseline allows one to infer that a number of introns found in only one phylum of higher animals result from frequent intron loss, as opposed to the seemingly more parsimonious alternative of isolated intron gain. The patterns of intron loss confirm results from protein sequences that most of the vertebrate genes, with the exception of β4, belong to one of two β subunit families. The similarity of the patterns within each of the β1,2,7 and β3,5,6,8 groups indicates that these gene structures have been very stable since early vertebrate evolution. Intron loss has been more extensive in the invertebrate genes, and obvious patterns have yet to emerge in this more limited data set. Received: 5 March 2001 / Accepted: 17 May 2001  相似文献   

18.
19.
Whereas the genomes of many organisms contain several nonallelic types of linker histone genes, one single histone H1 type is known in Drosophila melanogaster that occurs in about 100 copies per genome. Amplification of H1 gene sequences from genomic DNA of wild type strains of D. melanogaster from Oregon, Australia, and central Africa yielded numerous clones that all exhibited restriction patterns identical to each other and to those of the known H1 gene sequence. Nucleotide sequences encoding the evolutionarily variable domains of H1 were determined in two gene copies of strain Niamey from central Africa and were found to be identical to the known H1 sequence. Most likely therefore, the translated sequences of D. melanogaster H1 genes do not exhibit intragenomic or intergenomic variations. In contrast, three different histone H1 genes were isolated from D. virilis and found to encode proteins that differ remarkably from each other and from the H1 of D. melanogaster and D. hydei. About 40 copies of H1 genes are organized in the D. virilis genome with copies of core histone genes in gene quintets that were found to be located in band 25F of chromosome 2. Another type of histone gene cluster is present in about 15 copies per genome and contains a variable intergenic sequence instead of an H1 gene. The H1 heterogeneity in D. virilis may have arisen from higher recombination rates than occur near the H1 locus in D. melanogaster and might provide a basis for formation of different chromatin subtypes. Received: 2 March 2000 / Accepted: 1 June 2000  相似文献   

20.
 Based on PCR technologies, we have isolated three genomic cinnamyl alcohol dehydrogenase (CAD) clones from Norway spruce, Picea abies (L.) Karst., revealing about 99% identity within their protein coding regions. All clones contain five introns with an identity of 97–100% for intervening sequences II, III and IV, whereas intron V sequences revealed only 87–89% identity. Intron I sequences share an identity of 85–98% among all three clones. Intron IV is only present in Norway spruce and not found in published genomic CAD sequences of angiosperms. Tandem repeats between 24 and 49 bp were discovered within intervening sequences I and V. Southern hybridization of seedling DNA and PCR-based intron analyses using diploid leaf buds and haploid megagametophytes indicate the existence of a small CAD gene family within the spruce genome, consisting of at least two loci. Evolutionary analyses of CAD encoding sequences using distance matrix- and parsimony-based methods revealed that CADs from angiosperms form a clade distinct from those of gymnosperms. Confirmed by maximal bootstrap values of 100%, a gene duplication gave rise to two different groups of angiospermous CADs and this duplication may have occurred in an early stage of angiosperm radiation, certainly before the separation of the Dilleniidae and Rosidae lineages. Phylogenetic investigations suggest angiosperm CAD II sequences to have evolved more rapidly than angiosperm CAD I genes. On the other hand, CAD gene evolution appears to be significantly slower in conifers than in angiosperms. Received: 27 February 1998 / Accepted: 22 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号