首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid, sensitive and point-of-care detection of foodborne pathogenic bacteria is essential for food safety. In this study, we found that hemin-concanavalin A hybrid nanoflowers (HCH nanoflowers), as solid mimic peroxidase, could catalyze oxidation of 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) in the presence of H2O2 to a green-colored product. HCH nanoflowers, integrating the essential functions of both biological recognition and signal amplification, meet the requirements of signal labels for colorimetric immunoassay of bacteria. In view of the excellent peroxidase mimetic catalytic activity of HCH nanoflowers, a colorimetric biosensing platform was newly constructed and applied for sensitive detection of foodborne Escherichia coli O157:H7 (E. coli O157:H7). The corresponding detection limits was as low as 4.1?CFU/mL with wide linear ranges (101–106?CFU/mL).  相似文献   

2.
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.  相似文献   

3.
Twelve reagents were evaluated to develop a direct DNA extraction method suitable for PCR detection of foodborne bacterial pathogens. Many reagents exhibited strong PCR inhibition, requiring significant dilution of the extract with a corresponding reduction in sensitivity. Most reagents also exhibited much lower recovery of DNA from the gram-positive test organism (Listeria monocytogenes) than from the gram-negative organism (Escherichia coli O157:H7), preventing unbiased detection and quantitation of both organisms. The 5× HotSHOT + Tween reagent exhibited minimal inhibition and high extraction efficiency for both test organisms, providing a 15-min single-tube DNA-extraction protocol suitable for highly sensitive quantitative PCR assays.  相似文献   

4.
A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections.  相似文献   

5.
流式细胞术在细菌快速检测中的应用   总被引:8,自引:0,他引:8  
流式细胞仪(Flow cytometer)是集应用流体学、光学、电子学、生物学、免疫学等多门学科和技术于一体的新型高科技仪器。它的核心技术是流式细胞术(Flow cytometry,FCM),该技术是利用流式细胞仪,使单个细胞或其他微小生物粒子处于快速直线流动状态,且逐个通过光束,从而对单个细胞或微粒进行多参数(数量、大小、核酸含量、细胞活性、特定菌群或物种等)定量分析和分选的检测技术,具有快速、灵敏、精确以及便于操作等突出优点。本文简要介绍流式细胞仪的原理,并论述流式细胞技术在实验室研究、工业生产、临床诊断、环境评估等领域的细菌快速检测应用。  相似文献   

6.
Bacteria detection in real samples often involves long and tedious methodologies such as culture enrichment, biochemical screening, and serological confirmation. In this context, the development of biosensors and quick assays for bacteria detection appears as fast growing fields. However, a detailed study of reports in these areas reveals the existence of important differences in bacteria storage, handling, and detection conditions, indicating that authors do not take advantage of the well-established procedures existing for classical techniques such as enzyme-linked immunosorbent assay (ELISA). In the current work, we exploit standard ELISA methodology to identify and study diverse parameters that can be critical along the different steps of bacteria detection and sensing. Among others, we studied in detail the effect of the bacterial strain used and the presence of detergent and glycerol in assay performance, as well as the effects of heat inactivation or storing conditions, on bacteria integrity and thus detectability. Finally, we describe the use of “ready-to-use” frozen bacterial pellets as an excellent alternative to the use of daily prepared fresh cultures during assay optimization and preparation of calibration standards. The results presented are also supported by an extensive bibliography search, giving shape to an important compilation of information that will be useful to authors working in a variety of methodologies and sensing formats.  相似文献   

7.
生物传感器应用于食源性致病菌检测研究进展   总被引:2,自引:0,他引:2  
生物传感器技术是一种由生物、化学、物理、医学、电子技术等多种学科互相渗透形成起来的高新微量分析技术,具有选择性好、灵敏度高、分析速度快、成本低、能在复杂的体系中进行在线连续监测的特点.本文根据生物传感器的分子识别元件将生物传感器分为DNA传感器、免疫传感器、细胞传感器三大类,简要介绍各种生物传感器的原理及其在检测食源性致病菌方面的应用情况,并对未来生物传感器应用于实际检测进行了展望.  相似文献   

8.
9.
A pathogen detection methodology based on Bayesian decision theory has been developed for rapid and reliable detection of Salmonella typhimurium. The methodology exploits principles from statistical signal processing along with impedance spectroscopy in order to analytically determine the existence of pathogens in the target solution. The proposed technique is validated using a cost-effective and portable immunosensor. This device uses label-free, electrochemical impedance spectroscopy for pathogen detection and has been demonstrated to reliably detect pre-infectious levels of pathogen in sample solutions. The detection process does not entail any pathogen enrichment procedures. The results using the proposed technique indicate a detection time of approximately 6min (5min for data acquisition, 1min for analysis) for pathogen concentrations in the order of 500CFU/ml. The detection methodology presented here has demonstrated high accuracy and can be generalized for the detection of other pathogens with healthcare, food, and environmental implications. Furthermore, the technique has a low computational complexity and uses a minimal data-set (only 30 data-samples) for data analysis. Hence, it is ideal for use in hand-held pathogen detectors.  相似文献   

10.
Rapid, sensitive assays for nucleic acid amplification products have utility for the identification of bacterial or viral infections. We have developed a nucleic acid hybridization assay utilizing thin film technology that permits visual detection of hybrids. The silicon-based biosensor detects the presence of target sequences by enzymatically transducing the formation of nucleic acid hybrids into molecular thin films. These films alter the interference pattern of light on the biosensor surface, producing a perceived color change. We have applied this technology to the development of a chip containing capture probes specific for human respiratory virus sequences including respiratory syncytial virus, influenza virus A and B, parainfluenza virus types 1 and 3, and rhinovirus. In a ten-minute assay, the biosensor permits unambiguous identification of viral-specific RT/PCR products from infected cell lysates.  相似文献   

11.
A very sensitive assay for the rapid detection of pathogenic bacteria based on electrochemical genosensing has been designed. The assay was performed by the PCR specific amplification of the eaeA gene, related with the pathogenic activity of Escherichia coli O157:H7. The efficiency and selectivity of the selected primers were firstly studied by using standard Quantitative PCR (Q-PCR) based on TaqMan fluorescent strategy. The bacteria amplicon was detected by using two different electrochemical genosensing strategies, a highly selective biosensor based on a bulk-modified avidin biocomposite (Av-GEB) and a highly sensitive magneto sensor (m-GEC). The electrochemical detection was achieved in both cases by the enzyme marker HRP. The assay showed to be very sensitive, being able to detect 4.5 ng microl(-1) and 0.45 ng microl(-1) of the original bacterial genome after only 10 cycles of PCR amplification, when the first and the second strategies were used, respectively. Moreover, the electrochemical strategies for the detection of the amplicon showed to be more sensitive compared with Q-PCR strategies based on fluorescent labels such as TaqMan probes.  相似文献   

12.
We developed a straightforward antibody-based assay for rapid homogeneous detection of bacteria. Our sensors utilize antibody recognizing cell-surface epitopes of the target cell. Two samples of the antibody are prepared, each labeled via nanometer size flexible linkers with short complementary oligonucleotides that are modified with fluorochromes that could participate in fluorescence resonance energy transfer (FRET). The length of the complementary oligonucleotide sequences was designed such that very little annealing occurred in the absence of the target cells. In the presence of the target cells the two labeled antibodies bind to the surface of the cell resulting in a large local concentration of the complementary oligonucleotides that are attached to the antibody. This in turn drives the annealing of the complementary oligonucleotides which brings the fluorescence probes to close proximity producing large FRET signals proportional to the amount of target cells. Long flexible linkers used to attach the oligonucleotides to the antibody enable target-induced oligonucleotide annealing even if the density of surface antigens is only modest. We used Escherichia coli 0157:H7 and Salmonella typhimurium to demonstrate that this design produced sensors exhibiting rapid response time, high specificity, and sensitivity in detecting the target bacteria.  相似文献   

13.
An infectious disease that is transmitted from animals to humans and vice-versa is called zoonosis. Bacterial zoonotic diseases can re-emerge after they have been eradicated or controlled and are among the world's major health problems which inflict tremendous burden on healthcare systems. The first step to encounter such illnesses can be early and precise detection of bacterial pathogens to further prevent the following losses due to their infections. Although conventional methods for diagnosing pathogens, including culture-based, polymerase chain reaction-based, and immunological-based techniques, benefit from their advantages, they also have their own drawbacks, for example, taking long time to provide results, and requiring laborious work, expensive materials, and special equipment in certain conditions. Consequently, there is a greater tendency to introduce simple, innovative, quicker, accurate, and low-cost detection methods to effectively characterize the causative agents of infectious diseases. Biosensors, therefore, seem to practically be one of those novel promising diagnostic tools on this aim. These are effective and reliable elements with high sensitivity and specificity, that their usability can even be improved in medical diagnostic systems when empowered by nanoparticles. In the present review, recent advances in the development of several bio and nano biosensors, for rapid detection of zoonotic bacteria, have been discussed in details.  相似文献   

14.
An electrochemical microfluidic biosensor with an integrated minipotentiostat for the quantification of RNA was developed based on nucleic acid hybridization and liposome signal amplification. Specificity of the biosensor was ensured by short DNA probes that hybridize with the target RNA or DNA sequence. The reporter probe was coupled to liposomes entrapping the electrochemically active redox couple potassium ferri/ferrohexacyanide. The capture probes were coupled to superparamagnetic beads that were isolated on a magnet in the biosensor. Upon capture, the liposomes were lysed to release the electrochemical markers that were detected on an interdigitated ultramicroelectrode array in the biosensor just downstream of the magnet. The current was measured, stored and displayed by miniaturized instrumentation (miniEC). The accuracy of the miniEC was evaluated by comparing its performance to a standard bench-top electrochemical workstation in static and dynamic DC amperometric experiments. In both sets of experiments, the inexpensive miniEC performance was comparable in signal strength to that of the electrochemical workstation. In fact, the miniEC achieved a detection limit of 0.01 μM combined ferri/ferrohexacyanide concentration which was 10× lower than that of the standard lab-bench system. The response time of the miniEC system was the same for low concentrations taking about 10 s to steady state. It was, however, slower at higher concentrations, taking 5 s versus only 1 s for the bench-top system. Finally, the functionality of the miniEC was successfully demonstrated with the detection of Dengue virus RNA.  相似文献   

15.
电化学生物传感器快速检测DNA研究进展   总被引:2,自引:0,他引:2  
纪军  杨瑞馥 《生物技术通讯》2002,13(2):S017-S019
本简要地介绍了DNA电化学生物传感器研究的最新进展,重点讨论了改善生物传感器选择性和灵敏度的技术和方法。  相似文献   

16.
A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 105 c.f.u. ml?1. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens.  相似文献   

17.
环介导等温扩增(LAMP)技术是一种新兴的核酸恒温扩增技术,与微流控芯片技术相结合,可实现对病原菌的快速检测,具有特异性强、灵敏度高、操作简单等优点。本文根据不同终产物的检测方法对目前检测病原菌的相关微流控LAMP芯片进行了分类与介绍,并对技术的改进和存在的问题进行了分析,以期为后续的相关研究提供参考。  相似文献   

18.
Vibrational spectroscopy techniques have shown capacity to provide non-destructive, rapid, relevant information on microbial systematics, useful for classification and identification. Infrared spectroscopy enables the biochemical signatures from microbiological structures to be extracted and analyzed, in conjunction with advanced chemometrics. In addition, a number of recent studies have shown that Fourier Transform Infrared (FT-IR) spectroscopy can help understand the molecular basis of events such as the adaptive tolerance responses expressed by bacteria when exposed to stress conditions in the environment (e.g. those that cells confront in food and during food processing). The current review gives an overview of the published experimental techniques, data-processing algorithms and approaches used in FT-IR spectroscopy to assess the mechanisms of bacterial inactivation by food processing technologies and antimicrobial compounds, to monitor the spore and membrane properties of foodborne pathogens in changing environments, to detect stress-injured microorganisms in food-related environments, to assess dynamic changes in bacterial populations, and to study bacterial tolerance responses.  相似文献   

19.
We report a universal fluorescent aptasensor based on the AccuBlue dye, which is impermeant to cell membranes, for the detection of pathogenic bacteria. The sensor consists of AccuBlue, an aptamer strand, and its complementary strand (cDNA) that partially hybridizes to the aptamer strand. We have fabricated two models by changing the sequence of the reaction between the elements in the system. One is the “signal on” model in which the aptamer is first bound to the target, followed by the addition of cDNA and AccuBlue, at which time the cDNA hybridizes with the free unreacted aptamer and forms a double-stranded DNA (dsDNA) duplex. Such hybridization causes AccuBlue to insert into the dsDNA and exhibit significantly increased fluorescence intensity because of the specific intercalation of the AccuBlue into dsDNA rather than single-stranded DNA (ssDNA). The other model, “signal off,” involves hybridization of the aptamer with cDNA first, resulting in high fluorescence intensity on the addition of AccuBlue. When the target is added, the aptamer binds the target, causing the cDNA to detach from the dsDNA duplex and resulting in low fluorescence as a result of the liberation of AccuBlue. Because this design is based purely on DNA hybridization, and AccuBlue is impermeant to cell membranes, it could potentially be adapted to a wide variety of analytes.  相似文献   

20.
We demonstrate the integration of DNA amplification and detection functionalities developed on a lab‐on‐a‐chip microdevice utilizing solid‐phase polymerase chain reaction (SP‐PCR) for point‐of‐need (PON) DNA analyses. First, the polycarbonate microdevice was fabricated by thermal bonding to contain microchambers as reservoirs for performing SP‐PCR. Next, the microchambers were subsequently modified with polyethyleneimine and glutaraldehyde for immobilizing amine‐modified forward primers. During SP‐PCR, the immobilized forward primers and freely diffusing fluorescence‐labeled reverse primers cooperated to generate target amplicons, which remained covalently attached to the microchambers for the fluorescence detection. The SP‐PCR microdevice was used for the direct identifications of two widely detected foodborne pathogens, namely Salmonella spp. and Staphylococcus aureus, and an alga causing harmful algal blooms annually in South Korea, Cochlodinium polykrikoides. The SP‐PCR microdevice would be versatilely applied in PON testing as a universal platform for the fast identification of foodborne pathogens and environmentally threatening biogenic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号