首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotherapy, an approach currently used to protect humans against animal bites or stings, is often too specific. To broaden antiserum paraspecificity, use of antibodies directed against areas shared by all members of a toxin family was previously proposed. MST2 is a mAb that recognizes all long-chain curaremimetic toxins (Charpentier et al. (1990) J. Mol. Recog. 3, 74-81). It binds to toxin residues that make contact with the toxin's target, e.g., the nicotinic acetylcholine receptor (AcChoR). We now show that MST2 also recognizes (-) nicotine, an agonist of AcChoR. Binding properties of MST2 therefore mimick, at least partially, binding properties of AcChoR. Injection in rabbits of MST2 mixed with adjuvant, elicited anti-idiotypic (anti-Id) antibodies that inhibited binding of the toxin to AcChoR. A proportion of these anti-Id antibodies specifically bound AcChoR and thereby mimicked the toxin. Furthermore, rabbits immunized with MST2 elicited auto-anti-anti-Id antibodies capable of binding the toxin. Our data provide a molecular explanation for the previously reported signs of myasthenia gravis as triggered by antibodies raised against cholinergic antagonists. Implications in the design of antisera to toxic proteins are discussed.  相似文献   

2.
Vitamin D-dependent Ca2+-binding protein from pig duodenum was hydrolysed with trypsin in the presence of Ca2+ and two products were obtained: T1, which differed from the native protein by loss of Ac-Ser-Ala-Gln-Lys from the N-terminus and Ile-Ser-Gln-OH from the C-terminus, and T2, which differed from T1 by loss of a C-terminal lysine. The hydrolysis inactivated one of the two high-affinity Ca2+-binding sites on the native protein, and the remaining site was stable in T1 but labile in T2 when the proteins were Ca2+-free. Binding studies showed that T1 had Kd values of 2.8 +/- 0.1 nM, 57 +/- 13 microM and 0.8 +/- 0.3 microM for Ca2+, Mg2+ and Mn2+ respectively, and T2 had Kd 2.2 +/- 0.3 nM for Ca2+. The affinity for Mn2+, together with the other Kd values, identified the site on T1 as the site on the native protein previously found to have Kd 0.6 microM for Mn2+, rather than one with Kd 50 microM for Mn2+. In contrast with both the native protein and another form of the protein with a single Ca2+-binding site, the intrinsic fluorescence of T1 and T2 was little affected by the addition of Ca2+. It was concluded that the active binding site in T1 and T2, and also the site in the native protein with the higher affinity for Mn2+, was probably in the C-terminal half of the molecule.  相似文献   

3.
We have previously shown that the [3H]saxitoxin binding site of the sodium channel is expressed independently of the [125I]scorpion toxin binding site in chick muscle cultures and in rat brain. In the present work, we studied the development of the sodium channel protein during chemically induced differentiation of N1E-115 neuroblastoma cells, using [3H]saxitoxin binding, [125I]scorpion toxin binding, and 22Na uptake techniques. When grown in their normal culture medium, these cells are mostly undifferentiated, bind 90 +/- 10 fmol of [3H]saxitoxin/mg of protein and 112 +/- 14 fmol of [125I]scorpion toxin/mg protein, and, when stimulated with scorpion toxin and batrachotoxin, take up 70 +/- 5 nmol of 22Na/min/mg of protein. Cells treated with dimethyl sulfoxide (DMSO) or hexamethylene-bis-acetamide (HMBA) differentiate morphologically within 3 days. At this time, the [3H]saxitoxin binding, the [125I]scorpion toxin binding, and the 22Na uptake values are not very different from those of undifferentiated cells. With subsequent time in DMSO or HMBA, these values continue to increase, a result indicating that the main period of sodium channel expression occurs well after the cells have assumed the morphologically differentiated state. The data indicate that the expression of sodium channels and morphological differentiation are independently regulated neuronal properties, that the attainment of morphological differentiation is necessary but not in itself sufficient for full expression of the sodium channel proteins, and that, in contrast to the chick muscle cultures and rat brain, the [3H]saxitoxin site and [125I]scorpion toxin site appear to be coregulated in N1E-115 cells.  相似文献   

4.
Snake curaremimetic toxins are known to bind to the nicotinic acetylcholine receptor (AcChoR) [Changeux et al. (1970) Proc. Natl Acad. Sci. USA, 67, 1241-1247], thus blocking neuromuscular transmission, and producing respiratory failure in mammals. In the present paper we show that the toxic effects of Naja nigricollis toxin alpha to mammals can be efficiently reversed by toxin-alpha-specific antibodies. In vivo we observed that return to normal breathing in toxin-alpha-intoxicated and ventilated rats was 12 times faster after injection of specific antiserum or monoclonal antibody (M-alpha 1) as compared with control animals. Ex vivo we observed that return to normal contraction of a toxin-alpha-blocked phrenic nerve-hemidiaphragm preparation was 14 times more rapid after treatment with specific antiserum than after washings. In vitro we observed that antibodies accelerated the reversal of binding of [3H]toxin alpha to AcChoR prepared from rat diaphragm. The observation made in vitro furthermore indicates that antibodies are capable of destabilizing the [3H]toxin-AcChoR complex. A similar destabilization phenomenon occurs also in vivo, as inferred from measurements of receptor occupancy by [3H]toxin alpha in diaphragm of anaesthetized rats in the presence or absence of antibodies. The property of antibodies to reverse neurotoxin binding to AcChoR may be considered as a critical test for evaluation of the quality of a neurotoxin-specific antisera.  相似文献   

5.
The binding and phospholipase A2 activity of an 11,000-dalton beta-bungarotoxin, isolated from Bungarus multicincutus venom, have been characterized using rat brain subcellular fractions as substrates. 125I-labeled beta-bungarotoxin binds rapidly (k = 0.14 min-1 and 0.11 min-1), saturably (Vmax = 130.1 +/- 5.0 fmoles/mg and 128.2 +/- 7.1) fmoles/mg), and with high affinity (apparent Kd = 0.8 +/- 0.1 nM and 0.7 +/- 0.1 nM) to rat brain mitochondria and synaptosomal membranes, respectively, but not to myelin. The binding to synaptosomal membranes is inhibited by divalent cations and by pretreatment with trypsin. The binding results suggest that the toxin binds to specific protein receptor sites on presynpatic membranes. The 11,000-dalton toxin rapidly hydrolyzes synaptosomal membrane phospholipids to lysophosphatides and manifests relative substrate specificity in the order phosphatidyl ethanolamine greater than phosphatidyl choline greater than phosphatidyl serine. These results indicate that the 11,000-dalton beta-bungarotoxin is a phospholipase A2 and can use presynaptic membrane phospholipids as substrates. The binding, phospholipase activity and other biological properties of the 11,000-dalton toxin are contrasted with those of the beta-bungarotoxin found in highest concentration in the venom (the 22,000-dalton beta-bungarotoxin), and the two toxins are shown to have qualitatively similar properties. Finally the results are shown to support the hypothesis that beta-bungarotoxins act in a two-step fashion to inhibit transmitter release: first, by binding to a protein receptor site on the presynatic membrane associated with Ca2+ entry, and second, by perturbing through enzymatic hydrolyses the phospholipid matrix of the membrane and thereby causing an increase in passive Ca2+ permeability.  相似文献   

6.
The binding of 125I-labeled derivatives of scorpion toxin and sea anemone toxin to tetrodotoxin-insensitive sodium channels in cultured rat muscle cells has been studied. Specific binding of 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin was each blocked by either native scorpion toxin or native sea anemone toxin. K0.5 for block of binding by several polypeptide toxins was closely correlated with K0.5 for enhancement of sodium channel activation in rat muscle cells. These results directly demonstrate binding of sea anemone toxin and scorpion toxin to a common receptor site on the sodium channel. Binding of both 125I-labeled toxin derivatives is enhanced by the alkaloids aconitine and batrachotoxin due to a decrease in KD for polypeptide toxin. Enhancement of polypeptide toxin binding by aconitine and batrachotoxin is precisely correlated with persistent activation of sodium channels by the alkaloid toxins consistent with the conclusion that there is allosteric coupling between receptor sites for alkaloid and polypeptide toxins on the sodium channel. The binding of both 125I-labeled scorpion toxin and 125I-labeled sea anemone toxin is reduced by depolarization due to a voltage-dependent increase in KD. Scorpion toxin binding is more voltage-sensitive than sea anemone toxin binding. Our results directly demonstrate voltage-dependent binding of both scorpion toxin and sea anemone toxin to a common receptor site on the sodium channel and introduce the 125I-labeled polypeptide toxin derivatives as specific binding probes of tetrodotoxin-insensitive sodium channels in cultured muscle cells.  相似文献   

7.
The aim of this study was to determine if a change in protein/carbohydrate ratio influences plasma steroid hormone concentrations. There is little information about the effects of specific dietary components on steroid hormone metabolism in humans. Testosterone concentrations in seven normal men were consistently higher after ten days on a high carbohydrate diet (468 +/- 34 ng/dl, mean +/- S.E.) than during a high protein diet (371 +/- 23 ng/dl, p less than 0.05) and were accompanied by parallel changes in sex hormone binding globulin (32.5 +/- 2.8 nmol/l vs. 23.4 +/- 1.6 nmol/l respectively, p less than 0.01). By contrast, cortisol concentrations were consistently lower during the high carbohydrate diet than during the high protein diet (7.74 +/- 0.71 micrograms/dl vs. 10.6 +/- 0.4 micrograms/dl respectively, p less than 0.05), and there were parallel changes in corticosteroid binding globulin concentrations (635 +/- 60 nmol/l vs. 754 +/- 31 nmol/l respectively, p less than 0.05). The diets were equal in total calories and fat. These consistent and reciprocal changes suggest that the ratio of protein to carbohydrate in the human diet is an important regulatory factor for steroid hormone plasma levels and for liver-derived hormone binding proteins.  相似文献   

8.
Protein toxin inhibitors of protein synthesis.   总被引:3,自引:0,他引:3  
Two classes of extremely toxic proteins kill eukaryotic cells by covalently modifying unique structural features of components that are essential for protein synthesis. Intoxication by these proteins results from the entry of a catalytic fragment into the cytoplasm. One class is typified by diphtheria toxin and Pseudomonas exotoxin A. The catalytic component of these toxins ADP-ribosylates and inactivates elongation factor 2 which is an essential participant in protein synthesis. This modification occurs at a unique post-translational histidine derivative, diphthamide, that is present in the ribosomal binding site of the elongation factor. The two toxins differ in their molecular organization but appear to possess identical reaction mechanisms and very similar active sites. The other class contains two types of toxins typified, respectively, by alpha-sarcin, a member of a family of fungal toxins, and ricin, a member of a group of closely related plant proteins collectively termed ribosome-inactivating proteins. The catalytic components of the two types of toxins in this second class inactivate the large ribosomal subunit through two different hydrolytic alterations of 23-28S RNA. alpha-Sarcin and its congeners act as a specific endonuclease whereas ricin and its congeners act as a specific N-glycosidase. These hydrolytic cleavages occur at a pair of adjacent nucleotides within a highly conserved sequence near the 3' terminus of 23-28S RNA. The covalent integrity of this region of RNA is essential to elongation factor-dependent ribosomal functions and is located within the ribosomal binding domain of these factors. Both of these classes of toxins are being employed as 'magic bullets' to eliminate pathological cells. By combining the catalytic component of these toxins with various cell targeting components, useful and specific anticancer and immunomodulatory agents have been created.  相似文献   

9.
Kinetic data on toxin and antibody-toxin-conjugate inactivation of protein synthesis have been used to assess the variables which affect the transport of these toxins into the cytosol compartment. First-order inactivation rate constants of protein synthesis (ki) are compared under conditions of known receptor occupancy. The effect of inclusion of toxin B chains, both homologous and heterologous, in antibody-toxin conjugates is observed, and factors which affect toxin lag periods are studied. The results show that the inclusion of B chains in conjugates increases ki values 3-10-fold, but only if the B chain is homologous with the A chain. In spite of the augmentation of antibody-toxin-conjugate ki values by homologous toxin B chain, these ki values are only 1/20 those observed with unmodified toxins on sensitive cells. A further difference noted between toxins and antibody-toxin conjugates is the presence of a dose-dependent lag when toxins, but not antibody-toxin conjugates, effect sensitive cell types. This lag period for ricin can be shortened by alkalinizing the cell medium. The kinetic data can be fit by assuming a processing step interposed between the binding of ricin to surface receptors and the interaction of the A chain with ribosomes which is first-order in toxin concentration and pH-dependent. The time constant of this event is reflected in the dose-dependent lag period. It is proposed that antibody-toxin conjugates do not participate in this processing event and therefore fail to achieve the high entry levels exhibited by unmodified toxins.  相似文献   

10.
Theoretically, the activity of AB-type toxin molecules such as the insecticidal toxin (Cry toxin) from B. thuringiensis, which have one active site and two binding site, is improved in parallel with the binding affinity to its receptor. In this experiment, we tried to devise a method for the directed evolution of Cry toxins to increase the binding affinity to the insect receptor. Using a commercial T7 phage-display system, we expressed Cry1Aa toxin on the phage surface as fusions with the capsid protein 10B. These recombinant phages bound to a cadherin-like protein that is one of the Cry1Aa toxin receptors in the model target insect Bombyx mori. The apparent affinity of Cry1Aa-expressing phage for the receptor was higher than that of Cry1Ab-expressing phage. Phages expressing Cry1Aa were isolated from a mixed suspension of phages expressing Cry1Ab and concentrated by up to 130,000-fold. Finally, random mutations were made in amino acid residues 369–375 in domain 2 of Cry1Aa toxin, the mutant toxins were expressed on phages, and the resulting phage library was screened with cadherin-like protein-coated beads. As a result, phages expressing abnormal or low-affinity mutant toxins were excluded, and phages with high-affinity mutant toxins were selected. These results indicate that a method combining T7 phage display with selection using cadherin-like protein-coated magnetic beads can be used to increase the activity of easily obtained, low-activity Cry toxins from bacteria.  相似文献   

11.
In this study, the binding characteristics of BmK I, an alpha-like neurotoxic polypeptide purified from the venom of the Chinese scorpion Buthus martensi Karsch, were investigated on rat brain and cockroach nerve cord synaptosomes. The results showed that BmK I can bind to a single class of noninteracting binding sites on cockroach nerve cord synaptosomes with medium affinity (Kd = 16.5 +/ - 4.4 nM) and low binding capacity (Bmax = 1.05 +/- 0.23 pmol/mg protein), but lacks specific binding on rat brain synaptosomes. BmK AS, BmK AS-1 (two novel sodium channel-blocking ligands), BmK IT (an excitatory insect-selective toxin) and BmK IT2 (a depressant insect-selective toxin) from the same venom were found to be capable of depressing BmK I binding in cockroach nerve cord synaptosomes, which might be attributed to either allosteric modulation of voltage-gated Na+ channels by these toxic polypeptides or partial overlapping between the receptor binding sites of BmK I and these toxins. This thus supported the notion that alpha-like scorpion neurotoxic polypeptides bind to a distinct receptor site on sodium channels, which might be similar to the binding receptor site of alpha-type insect toxins, and also related to those of BmK AS type and insect-selective scorpion toxins on insect sodium channels.  相似文献   

12.
Some species of puffer fish have been reported to possess both of tetrodotoxin and saxitoxin, which share one binding site on sodium channels. We purified a novel soluble glycoprotein that binds to these toxins from plasma of the puffer fish, Fugu pardalis, and named puffer fish saxitoxin and tetrodotoxin binding protein (PSTBP). PSTBP possessed a binding capacity of 10.6 +/- 0.97 nmol x mg(-1) protein and a K(d) of 14.6 +/- 0.33 nm for [(3)H]saxitoxin in equilibrium binding assays. [(3)H]Saxitoxin (10 nm) binding to PSTBPs was half-inhibited by the presence of tetrodotoxin and saxitoxin at 12 microm and 8.5 nm, respectively. From the results of gel filtration chromatography (200 kDa) and SDS/PAGE (104 kDa), PSTBP was suggested to consist of noncovalently linked dimers of a single subunit. PSTBP was completely deglycosylated by glycopeptidase F, producing a single band at 42 kDa. Two highly homologous cDNAs to each other coding PSTBP (PSTBP1 and PSTBP2, the predicted amino-acid identity 93%), were obtained from a cDNA library of F. pardalis liver. These proteins consisted to two tandemly repeated homologous domains. The predicted amino-acid sequences of PSTBP1 and 2 were not homologous to that of saxiphilin, a reported saxitoxin binding protein, or sodium channels, but their N-terminus sequences were homologous to that of the reported tetrodotoxin binding protein from plasma of Fugu niphobles, which has not been fully characterized. The partially homologous cDNA sequences to PSTBP1 and 2 were also found in expressed sequence tag clones of nontoxic flounders liver. Presumably, PSTBP is involved in accumulation and/or excretion of toxins in puffer fish.  相似文献   

13.
Site-directed antibodies corresponding to conserved putative extracellular segments of sodium channels, coupled with binding studies of radiolabeled insect-selective scorpion neurotoxins, were employed to clarify the relationship between the toxins' receptor sites and the insect sodium channel. (1) The depressant insect toxin LqhIT2 was shown to possess two noninteracting binding sites in locust neuronal membranes: a high-affinity (KD1 = 0.9 +/- 0.6 nM) and low-capacity (Bmax1 = 0.1 +/- 0.07 pmol/mg) binding site as well as a low-affinity (KD2 = 185 +/- 13 nM) and high-capacity (Bmax2 = 10.0 +/- 0.6 pmol/mg) binding site. (2) The high-affinity site serves as a target for binding competition by the excitatory insect toxin AaIT. (3) The binding of LqhIT2 was significantly inhibited in a dose-dependent manner by each of four site-directed antibodies. The binding inhibition resulted from reduction in the number of binding sites. (4) The antibody-mediated inhibition of [125I]AaIT binding differs from that of LqhIT2: three out of the four antibodies which inhibited LqhIT2 binding only partially affected AaIT binding. Two antibodies, one corresponding to extracellular and one to intracellular segments of the channel, did not affect the binding of either toxin. These data suggest that the receptors to the depressant and excitatory insect toxins (a) comprise an integral part of the insect sodium channel, (b) are formed by segments of external loops in domains I, III, and IV of the sodium channel, and (c) are localized in close proximity but are not identical in spite of the competitive interaction between these toxins.  相似文献   

14.
The synthesis of inactive enzyme precursors, also known as "zymogens," serves as a mechanism for regulating the execution of selected catalytic activities in a desirable time and/or site. Zymogens are usually activated by proteolytic cleavage. Many viruses encode proteases that execute key proteolytic steps of the viral life cycle. Here, we describe a proof of concept for a therapeutic approach to fighting viral infections through eradication of virally infected cells exclusively, thus limiting virus production and spread. Using the hepatitis C virus (HCV) as a model, we designed two HCV NS3 protease-activated "zymogenized" chimeric toxins (which we denote "zymoxins"). In these recombinant constructs, the bacterial and plant toxins diphtheria toxin A (DTA) and Ricin A chain (RTA), respectively, were fused to rationally designed inhibitor peptides/domains via an HCV NS3 protease-cleavable linker. The above toxins were then fused to the binding and translocation domains of Pseudomonas exotoxin A in order to enable translocation into the mammalian cells cytoplasm. We show that these toxins exhibit NS3 cleavage dependent increase in enzymatic activity upon NS3 protease cleavage in vitro. Moreover, a higher level of cytotoxicity was observed when zymoxins were applied to NS3 expressing cells or to HCV infected cells, demonstrating a potential therapeutic window. The increase in toxin activity correlated with NS3 protease activity in the treated cells, thus the therapeutic window was larger in cells expressing recombinant NS3 than in HCV infected cells. This suggests that the "zymoxin" approach may be most appropriate for application to life-threatening acute infections where much higher levels of the activating protease would be expected.  相似文献   

15.
The current studies were designed to characterize calcium transport by intestinal brush border membrane in the spontaneously hypertensive rat (SHR) and normotensive control, the Wistar-Kyoto (WKY) rat. The biochemical and functional purity of the intestinal brush border membranes in SHR and WKY rats was validated by marker enzymes and the ability to transiently transport D-glucose in the presence of Na+ gradient. Calcium transport into duodenal and jejunal vesicles represented a minor binding component and transmembrane movement as evident by initial rate studies, A23187 studies, and lanthanum displacement experiments. Initial rate and time course of calcium uptake was lower in SHR compared with WKY rats. Kinetic analysis of calcium uptake by the jejunum (total uptake minus binding component) showed a Vmax of 6.98 +/- 0.2 and 1.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.76 +/- 0.04 and 0.87 +/- 0.1 mM for WKY rats and SHR, respectively. Similar kinetic analysis of calcium uptake by the duodenal segments showed a Vmax of 10.3 +/- 0.8 and 2.8 +/- 0.2 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.01). Km values were 0.7 +/- 0.2 and 0.3 +/- 0.06 mM (P greater than 0.05). Vmax of calcium uptake in the 2-week-old rats (prehypertensive period) was 6.0 +/- 0.3 and 3.53 +/- 0.3 nmol/mg protein/7 sec in WKY rats and SHR, respectively (P less than 0.001), whereas Km values were 0.60 +/- 0.07 and 0.5 +/- 0.01 mM, respectively. These results suggest that calcium binding and uptake by duodenal and jejunal intestinal brush border membranes of SHR is significantly decreased compared with WKY rats. The decrease in transmembrane calcium uptake is secondary to decrease in Vmax and is present before the appearance of hypertension, implying a genetically determined defect in calcium uptake in intestinal brush border membranes of the SHR.  相似文献   

16.
Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.  相似文献   

17.
The allosteric regulation of binding to and the activation of cGMP-dependent protein kinase (cGMP kinase) was studied under identical conditions at 30 degrees C using three forms of cGMP-kinase which differed in the amino-terminal segment, e.g. native cGMP kinase, phosphorylated cGMP kinase which contained 1.4 +/- 0.4 mol phosphate/subunit and constitutively active cGMP kinase which lacked the amino-terminal dimerization domain. These three enzyme forms have identical kinetic constants, e.g. number of cGMP-binding sites, Km values for MgATP and the heptapeptide kemptide, and Vmax values. In the native enzyme, MgATP decreases the affinity for binding site 1. This effect is abolished by 1 M NaCl. In contrast, high concentrations of Kemptide increase the affinity of binding site 2 about fivefold. Under the latter conditions, identical Kd values of 0.2 microM were obtained for sites 1 and 2. Salt, MgATP and Kemptide do not affect the binding kinetics of the phosphorylated or the constitutively active enzyme, suggesting that allosteric regulation depends solely on the presence of a native amino-terminal segment. Cyclic GMP activates the native enzyme at Ka values which are identical with the Kd values for both binding sites. The activation of cGMP-dependent protein kinase is noncooperative but the Ka value depends on the substrate peptide concentration. These results show that the activity of cGMP kinase is primarily regulated by conformational changes within the amino-terminal domain.  相似文献   

18.
It has been shown recently that polypeptide toxins that modulate the gating properties of voltage-sensitive cation channels are able to bind to phospholipid membranes, leading to the suggestion that these toxins are able to access a channel-binding site that remains membrane-restricted (Lee, S.-Y., and MacKinnon, R. (2004) Nature 430, 232-235). We therefore examined the ability of anthopleurin B (ApB), a sea anemone toxin that selectively modifies inactivation kinetics of Na(V)1.x channels, and ProTx-II, a spider toxin that modifies activation kinetics of the same channels, to bind to liposomes. Whereas ProTx-II can be quantitatively depleted from solution upon incubation with phosphatidylcholine/phosphatidylserine liposomes, ApB displays no discernible phospholipid binding activity. We therefore examined the activities of structurally unrelated site 3 and site 4 toxins derived from Leiurus and Centruroides venoms, respectively, in the same assay. Like ApB, the site 3 toxin LqqV shows no lipid binding activity, whereas the site 4 toxin Centruroides toxin II, like ProTx-II, is completely bound. We conclude that toxins that modify inactivation kinetics via binding to Na(V)1.x site 3 lack the ability to bind phospholipids, whereas site 4 toxins, which modify activation, have this activity. This inherent difference suggests that the conformation of domain II more closely resembles that of the K(V)AP channel than does the conformation of domain IV.  相似文献   

19.
The SpvB protein from Salmonella enterica was recently discovered as an actin-ADP-ribosylating toxin. SpvB is most likely delivered via a type-III secretion system into eukaryotic cells and does not have a binding/translocation component. This is in contrast to the family of binary actin-ADP-ribosylating toxins from various Bacillus and Clostridium species. However, there are homologies in amino acid sequences between the C-terminal domain of SpvB and the catalytic domains of the actin-ADP-ribosylating toxins such as C2 toxin from Clostridium botulinum and iota toxin from Clostridium perfringens. We compared the biochemical properties of the catalytic C-terminal domain of SpvB (C/SpvB) with the enzyme components of C2 toxin and iota toxin. The specificity of C/SpvB concerning the modification of G- or F-actin was comparable to the C2 and iota toxins, although there were distinct differences regarding the recognition of actin isoforms. C/SpvB and iota toxin modify both muscle alpha-actin and nonmuscle beta/gamma-actin, whereas C2 toxin only modifies beta/gamma-actin. In contrast to the iota and C2 toxins, C/SpvB possessed no detectable glycohydrolase activity in the absence of a protein substrate. The maximal reaction rates were comparable for all toxins, whereas variable K(m) values for NAD were evident. We identified arginine-177 as the modification site for C/SpvB with the actin homologue protein Act88F from Drosophila.  相似文献   

20.
The solution conformation of toxin alpha from Naja nigricollis (61 amino acids and four disulfides), a snake toxin which specifically blocks the activity of the nicotinic acetylcholine receptor (AcChoR), has been determined using nuclear magnetic resonance spectroscopy and molecular modeling. The solution structures were calculated using 409 distance and 73 dihedral angle restraints. The average atomic rms deviation between the eight refined structures and the mean structure is approximately 0.5 A for the backbone atoms. The overall folding of toxin alpha consists of three major loops which are stabilized by three disulfide bridges and one short C terminal loop stabilized by a fourth disulfide bridge. All the disulfides are grouped in the same region of the molecule, forming a highly constrained structure from which the loops protrude. As predicted, this structure appears to be very similar to the 1.4-A resolution crystal structure of another snake neurotoxin, namely, erabutoxin b from Laticauda semifasciata. The atomic rms deviation for the backbone atoms between the solution and crystal structures is approximately 1.7 A. The minor differences which are observed between the two structures are partly related to the deletion of one residue from the chain of toxin alpha. It is notable that, although the two toxins differ from each other by 16 amino acid substitutions, their side chains have an essentially similar spatial organization. However, most of the side chains which constitute the presumed AcChoR binding site for the curaremimetic toxins are poorly resolved in toxin alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号