首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The epaxial-hypaxial subdivision of the avian somite   总被引:1,自引:0,他引:1  
In all jaw-bearing vertebrates, three-dimensional mobility relies on segregated, separately innervated epaxial and hypaxial skeletal muscles. In amniotes, these muscles form from the morphologically continuous dermomyotome and myotome, whose epaxial-hypaxial subdivision and hence the formation of distinct epaxial-hypaxial muscles is not understood. Here we show that En1 expression labels a central subdomain of the avian dermomyotome, medially abutting the expression domain of the lead-lateral or hypaxial marker Sim1. En1 expression is maintained when cells from the En1-positive dermomyotome enter the myotome and dermatome, thereby superimposing the En1-Sim1 expression boundary onto the developing musculature and dermis. En1 cells originate from the dorsomedial edge of the somite. Their development is under positive control by notochord and floor plate (Shh), dorsal neural tube (Wnt1) and surface ectoderm (Wnt1-like signalling activity) but negatively regulated by the lateral plate mesoderm (BMP4). This dependence on epaxial signals and suppression by hypaxial signals places En1 into the epaxial somitic programme. Consequently, the En1-Sim1 expression boundary marks the epaxial-hypaxial dermomyotomal or myotomal boundary. In cell aggregation assays, En1- and Sim1-expressing cells sort out, suggesting that the En1-Sim1 expression boundary may represent a true compartment boundary, foreshadowing the epaxial-hypaxial segregation of muscle.  相似文献   

2.
The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.  相似文献   

3.
The morphogenetic cell movements responsible for growth and morphogenesis in vertebrate embryos are poorly understood. Myotome precursor cells undergo myotomal translocation; a key morphogenetic cell movement whereby myotomal precursor cells leave the dermomyotome epithelium and enter the subjacent myotome layer where myogenic differentiation ensues. The precursors to the embryonic epaxial myotome are concentrated in the dorsomedial lip (DML) of the somite dermomyotome (W. F. Denetclaw, B. Christ and C. P. Ordahl (1997) Development 124, 1601-1610), a finding recently substantiated through surgical transplantation studies (C. P. Ordahl, E. Berdougo, S. J. Venters and W. F. Denetclaw, Jr (2001) Development 128, 1731-1744). Confocal microscopy was used here to analyze the location and pattern of myotome cells whose precursors had earlier been labeled by fluorescent dye injection into the middle region of the DML, a site that maximizes the potential to discriminate among experimental outcomes. Double-dye injection experiments conducted at this site demonstrate that cells fated to form myotome do not involute around the recurved epithelium of the DML but rather are displaced laterally where they transiently intermingle with cells fated to enter the central epithelial sheet region of the dermomyotome. Time- and position-dependent labeling experiments demonstrated that myotome precursor cells translocate directly from the middle region of the DML without prior intra-epithelial 'translational' movements of precursor cells to either the cranial or caudal lips of the dermomyotome epithelium, nor were any such translational movements evident in these experiments. The morphogenetic cell movements demonstrated here to be involved in the directional growth and segmental patterning of the myotome and dermomyotome bear interesting similarities with those of other morphogenetic systems.  相似文献   

4.
The epaxial muscles of the body are localized in a dorsomedial position with respect to the axial structures, attach to the vertebral column and are concerned with maintenance of posture and movements of the vertebral column. The epaxial musculature derives from the myotome, a transient embryonic structure whose formation is initiated at the epithelial somite stage and is accomplished following complete dissociation of the epithelial dermomyotome. Recent results suggest that myotome development is a multistage process, characterized by addition of sequential waves of muscle progenitors. A first wave originates along the medial part of the epithelial somite and gives rise to a primary myotomal structure; a second wave arises from the rostral and caudal lips of the epithelial dermomyotome and from the dorsomedial lip, which contributes indirectly through the rostral and caudal edges, and a third wave which is composed of mitotically active resident progenitors accounts for significant growth of the myotomal mass and for its transition into epaxial muscle. In this review we discuss the origin, migration and known cellular and molecular features that characterize each wave of progenitors that colonize the myotome.  相似文献   

5.
6.
Reptilian myotomal myogenesis is poorly understood. This paper reports on structural, ultrastructural and immunocytochemical studies of muscle differentiation in sand lizard (Lacerta agilis) embryos. During somitogenesis, the somites are composed of epithelial vesicles with a centrally located somitocoel. At later developmental stages the ventral portion of the somite cortex disaggregates into the sclerotome mesenchyme, while the dorsal wall of the somite differentiates into dermomyotome. At these developmental stages, mononucleated cells of the dermomyotome are Pax3-positive. The dermomyotome layer forms the dorsomedial and ventromedial lips. The myotome is first composed of mono- and then of multinucleated myotubes and small mononucleated cells that occur in the vicinity of the myotubes. These mononucleated cells exhibit low proliferative potential as revealed by the use of PCNA antibody. At subsequent stages of myogenesis the mononucleated cells express Pax7 protein, a marker of satellite cells, and assume ultrastructural features characteristic of satellite cells. Some of the mononucleated cells contribute to muscle growth, being involved in fusion with differentiating muscle fibers. This study revealed similarities of myotomal myogenesis in reptiles to that of other vertebrates.  相似文献   

7.
8.
We previously demonstrated that progenitors of both endothelium and smooth muscle cells in the aortic wall originated from the somite in the trunk of the embryo. However whether the contribution to vascular Smooth Muscle Cells (vSMC) is restricted to the aorta or encompasses other vessels of the trunk is not known. Moreover, the somitic compartment that gives rise to vSMC is yet to be defined. Quail-chick orthotopic transplantations of either the segmental plate or the dorsal or ventral halves from single somites demonstrate that 1° vSMC of the body wall including those of the limbs originate from the somite. 2° Like vSMC, aortic pericytes originate from the somite. 3° The sclerotome is the somite compartment that gives rise to vSMC and pericytes. PAX1 and FOXC2, two molecular markers of the sclerotomal compartment, are expressed by vSMC and pericytes during the earliest phases of vascular wall formation. Later on, PDGFR-β and MYOCARDIN are also expressed by these cells. In contrast, the dermomyotome gives rise to endothelium but never to cells in the vascular wall. Taken together, out data point out to the critical role of the somite in vessel formation and demonstrate that vSMC and endothelial cells originate from two independent somitic compartments.  相似文献   

9.
In the development of the somite, signals from neighboring tissues have been suggested to play critical roles. We have found that when interaction between the ectoderm and the somite is blocked by inserting a piece of polyethylene terephatalate film between them in 2-day-chicken embryo, one of the derivatives of somite, the distal rib, did not form. We examined somite development after the operation, to know the correlation between somite development and distal rib formation. In the operated embryo, the dermomyotome was medio-laterally shorter than in the normal embryo, and Pax3 and Sim1 expressions that are seen in the lateral part of normal dermomyotomes were not found, suggesting that the lateral part of the dermomyotome was missing. Although the sclerotome appeared to be normal in its histology and Pax1 expression pattern in the operated embryo, we could not detect the expression of either Scleraxis nor γ-FBP that are expressed in the cells around the boundaries between the adjacent dermomyotomes in normal embryos. Thus, under the influence of surface ectoderm, the lateral part of dermomyotome and/or the mesenchyme around rostral and caudal edges of dermomyotomes are suggested to play an important role in the distal rib development.  相似文献   

10.
11.
We have previously reported that the myotome is formed by a first wave of pioneer cells generated from all along the dorsomedial portion of the epithelial somite and a second wave of cells issued from all four edges of the dermomyotome. Cells from the extreme rostral and caudal edges directly generate myofibers that elongate towards the opposite pole of each segment and along the pre-existing myotomal scaffold. In contrast, cells from the dorsomedial and ventrolateral lips first reach the extreme edges and then contribute to myofiber formation. The mechanism by which these epithelial cells translocate remained unknown and was the goal of the present study. We have found that epithelial cells along the dorsomedial and ventrolateral lips of the dermomyotome first delaminate into the immediate underlayer of the corresponding lips, the sub-lip domain, then migrate longitudinally along this pathway until reaching the extreme edges from which they differentiate into myofibers. Cells of the sub-lip domain are negative for Pax3 and desmin but express MyoD, Myf5 and FREK, suggesting that they are specific myogenic progenitors.  相似文献   

12.
The cellular and molecular mechanisms that govern early muscle patterning in vertebrate development are unknown. The earliest skeletal muscle to organize, the primary myotome of the epaxial domain, is a thin sheet of muscle tissue that expands in each somite segment in a lateral-to-medial direction in concert with the overlying dermomyotome epithelium. Several mutually contradictory models have been proposed to explain how myotome precursor cells, which are known to reside within the dermomyotome, translocate to the subjacent myotome layer to form this first segmented muscle tissue of the body. Using experimental embryology to discriminate among these models, we show here that ablation of the dorsomedial lip (DML) of the dermomyotome epithelium blocks further primary myotome growth while ablation of other dermomyotome regions does not. Myotome growth and morphogenesis can be restored in a DML-ablated somite of a host embryo by transplantation of a second DML from a donor embryo. Chick-quail marking experiments show that new myotome cells in such recombinant somites are derived from the donor DML and that cells from other regions of the somite are neither present nor required. In addition to the myotome, the transplanted DML also gives rise to the dermomyotome epithelium overlying the new myotome growth region and from which the mesenchymal dermatome will later emerge. These results demonstrate that the DML is a cellular growth engine that is both necessary and sufficient to drive the growth and morphogenesis of the primary myotome and simultaneously drive that of the dermomyotome, an epithelium containing muscle, dermis and possibly other potentialities.  相似文献   

13.
The dermomyotome is the dorsal compartment of the somite which gives rise to multiple cell fates including skeletal muscle, connective tissue, and endothelia. It consists of a pseudostratified, roughly rectangular epithelial sheet, the margins of which are called the dermomyotomal lips. The dermomyotomal lips are blastema-like epithelial growth zones, which continuously give rise to resident dermomyotomal cells and emigrating muscle precursor cells, which populate the subjacent myotomal compartment. Wnt signaling has been shown to regulate both dermomyotome formation and maintenance of the dermomyotomal lips. Whereas the epithelialization of the dermomyotome is regulated via canonical, β-catenin-dependent Wnt signaling, the downstream signaling mechanisms suppressing epithelial-mesenchymal transition (EMT) in the mature dermomyotomal lips have been unknown. Here, we present evidence that dermomyotomal lip sustainment is differentially regulated. Whereas the dorsomedial dermomyotomal lip is maintained by canonical Wnt signaling, development of the ventrolateral dermomyotomal lip is regulated by non-canonical, PCP-like Wnt signaling. We discuss our results in the light of the different developmental prerequisites in the dorsomedial and ventrolateral lips, respectively, thus providing a new perspective on the regulation of dermomyotomal EMT.  相似文献   

14.
A two-step mechanism for myotome formation in chick   总被引:3,自引:0,他引:3  
The study of the morphogenetic cell movements underlying myotome formation in the chick embryo has led to the emergence of highly controversial models. Here we report a real-time cell lineage analysis of myotome development using electroporation of a GFP reporter in newly formed chick somites. Confocal analysis of cell movements demonstrates that myotome formation involves two sequential steps. In a first phase, incremental myotome growth results from a contribution of myocytes derived solely from the medial border of the dermomyotome. In a second phase, myocytes are produced from all four borders of the dermomyotome. The relative distribution of myocytes demonstrates that the medial and the lateral borders of the somite generate exclusively epaxial and hypaxial muscles. This analysis also identified five myotomal regions, characterized by the origin of the myocytes that constitute them. Together, our results provide a comprehensive model describing the morphogenesis of the early myotome in higher vertebrates.  相似文献   

15.
The somitic compartment that gives rise to trunk muscle and dermis in amniotes is an epithelial sheet on the external surface of the somite, and is known as the dermomyotome. However, despite its central role in the development of the trunk and limbs, the evolutionary history of the dermomyotome and its role in nonamniotes is poorly understood. We have tested whether a tissue with the morphological and molecular characteristics of a dermomyotome exists in nonamniotes. We show that representatives of the agnathans and of all major clades of gnathostomes each have a layer of cells on the surface of the somite, external to the embryonic myotome. These external cells do not show any signs of terminal myogenic or dermogenic differentiation. Moreover, in the embryos of bony fishes as diverse as sturgeons (Chondrostei) and zebrafish (Teleostei) this layer of cells expresses the pax3 and pax7 genes that mark myogenic precursors. Some of the pax7-expressing cells also express the differentiation-promoting myogenic regulatory factor Myogenin and appear to enter into the myotome. We therefore suggest that the dermomyotome is an ancient and conserved structure that evolved prior to the last common ancestor of all vertebrates. The identification of a dermomyotome in fish makes it possible to apply the powerful cellular and genetic approaches available in zebrafish to the understanding of this key developmental structure.  相似文献   

16.
17.
Experimental manipulation in birds has shown that trunk dermis has a double origin: dorsally, it derives from the somite dermomyotome, while ventrally, it is formed by the somatopleure. Taking advantage of an nlacZ reporter gene integrated into the mouse Msx1 locus (Msx1(nlacZ) allele), we detected segmental expression of the Msx1 gene in cells of the dorsal mesenchyme of the trunk between embryonic days 11 and 14. Replacing somites from a chick host embryo by murine Msx1(nlacZ )somites allowed us to demonstrate that these Msx1-(beta)-galactosidase positive cells are of somitic origin. We propose that these cells are dermal progenitor cells that migrate from the somites and subsequently contribute to the dorsalmost dermis. By analysing Msx1(nlacZ) expression in a Splotch mutant, we observed that migration of these cells does not depend on Pax3, in contrast to other migratory populations such as limb muscle progenitor cells and neural crest cells. Msx1 expression was never detected in cells overlying the dermomyotome, although these cells are also of somitic origin. Therefore, we propose that two somite-derived populations of dermis progenitor cells can be distinguished. Cells expressing the Msx1 gene would migrate from the somite and contribute to the dermis of the dorsalmost trunk region. A second population of cells would disaggregate from the somite and contribute to the dermis overlying the dermomyotome. This population never expresses Msx1. Msx1 expression was investigated in the context of the onset of dermis formation monitored by the Dermo1 gene expression. The gene is downregulated prior to the onset of dermis differentiation, suggesting a role for Msx1 in the control of this process.  相似文献   

18.
Pioneer myoblasts generate the first myotomal fibers and act as a scaffold to pattern further myotome development. From their origin in the medial epithelial somite, they dissociate and migrate towards the rostral edge of each somite, from which differentiation proceeds in both rostral-to-caudal and medial-to-lateral directions. The mechanisms underlying formation of this unique wave of pioneer myofibers remain unknown. We show that rostrocaudal or mediolateral somite inversions in avian embryos do not alter the original directions of pioneer myoblast migration and differentiation into fibers, demonstrating that regulation of pioneer patterning is somite-intrinsic. Furthermore, pioneer myoblasts express Robo2 downstream of MyoD and Myf5, whereas the dermomyotome and caudal sclerotome express Slit1. Loss of Robo2 or of sclerotome-derived Slit1 function perturbed both directional cell migration and fiber formation, and their effects were mediated through RhoA. Although myoblast specification was not affected, expression of the intermediate filament desmin was reduced. Hence, Slit1 and Robo2, via RhoA, act to pattern formation of the pioneer myotome through the regulation of cytoskeletal assembly.  相似文献   

19.
In mammals, Six5, Six4 and Six1 genes are co-expressed during mouse myogenesis. Six4 and Six5 single knockout (KO) mice have no developmental defects, while Six1 KO mice die at birth and show multiple organ developmental defects. We have generated Six1Six4 double KO mice and show an aggravation of the phenotype previously reported for the single Six1 KO. Six1Six4 double KO mice are characterized by severe craniofacial and rib defects, and general muscle hypoplasia. At the limb bud level, Six1 and Six4 homeogenes control early steps of myogenic cell delamination and migration from the somite through the control of Pax3 gene expression. Impaired in their migratory pathway, cells of the somitic ventrolateral dermomyotome are rerouted, lose their identity and die by apoptosis. At the interlimb level, epaxial Met expression is abolished, while it is preserved in Pax3-deficient embryos. Within the myotome, absence of Six1 and Six4 impairs the expression of the myogenic regulatory factors myogenin and Myod1, and Mrf4 expression becomes undetectable. Myf5 expression is correctly initiated but becomes restricted to the caudal region of each somite. Early syndetomal expression of scleraxis is reduced in the Six1Six4 embryo, while the myotomal expression of Fgfr4 and Fgf8 but not Fgf4 and Fgf6 is maintained. These results highlight the different roles played by Six proteins during skeletal myogenesis.  相似文献   

20.
We have previously found that the myotome is formed by a first wave of pioneer cells generated along the medial epithelial somite and a second wave emanating from the dorsomedial lip (DML), rostral and caudal edges of the dermomyotome (Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998a) Mech. Dev. 74, 59-73; Kahane, N., Cinnamon, Y. and Kalcheim, C. (1998b) Development 125, 4259-4271). In this study, we have addressed the development and precise fate of the ventrolateral lip (VLL) in non-limb regions of the axis. To this end, fluorescent vital dyes were iontophoretically injected in the center of the VLL and the translocation of labeled cells was followed by confocal microscopy. VLL-derived cells colonized the ventrolateral portion of the myotome. This occurred following an early longitudinal cell translocation along the medial boundary until reaching the rostral or caudal dermomyotome lips from which fibers emerged into the myotome. Thus, the behavior of VLL cells parallels that of their DML counterparts which colonize the opposite, dorsomedial portion of the myotome. To precisely understand the way the myotome expands, we addressed the early generation of hypaxial intercostal muscles. We found that intercostal muscles were formed by VLL-derived fibers that intermingled with fibers emerging from the ventrolateral aspect of both rostral and caudal edges of the dermomyotome. Notably, hypaxial intercostal muscles also contained pioneer myofibers (first wave) showing for the first time that lateral myotome-derived muscles contain a fundamental component of fibers generated in the medial domain of the somite. In addition, we show that during myotome growth and evolution into muscle, second-wave myofibers progressively intercalate between the pioneer fibers, suggesting a constant mode of myotomal expansion in its dorsomedial to ventrolateral extent. This further suggests that specific hypaxial muscles develop following a consistent ventral expansion of a 'compound myotome' into the somatopleure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号