首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In groups of cooperatively foraging individuals, communication may improve the group’s performance by directing foraging effort to where it is most useful. Honey bees (Apis mellifera) use a specialized dance to communicate the location of floral resources. Because honey bees dance longer for more rewarding resources, communication may shift the colony’s foraging effort towards higher quality resources, and thus narrow the spectrum of resource types used. To test the hypothesis that dance communication changes how much honey bee colonies specialize on particular resources, we manipulated their ability to communicate location, and assessed the relative abundance of different pollen taxa they collected. This was repeated across five natural habitats that differed in floral species richness and spatial distribution. Contrary to expectation, impairing communication did not change the number or diversity of pollen (resource) types used by individual colonies per day. However, colonies with intact dance communication were more consistent in their resource use, while those with impaired communication were more likely to collect rare, novel pollen types. This suggests that communication plays an important role in shaping how much colonies invest in exploring new resources versus exploiting known ones. Furthermore, colonies that did more exploration also tended to collect less pollen overall, but only in environments with greater floral abundance per patch. In such environments, the ability to effectively exploit highly rewarding resources may be especially important–and dance communication may help colonies do just that. This could help explain how communication benefits honey bee colonies, and also why it does so only under certain environmental conditions.  相似文献   

2.
To achieve maximised and sustainable crop productivity, it is critical that we develop crop-specific strategies for managing pollination. Honey bees (Apis mellifera) and stingless bees (Tetragonula carbonaria) are considered effective pollinators of macadamia (Macadamia integrifolia). The introduction of managed honey bee or stingless bee hives into orchards is likely to boost the numbers of these insects visiting flowers; however, there is a lack of published information and consensus regarding their management for pollination. Here, we identify factors that affect the distribution of both honey bees and stingless bees across cultivated macadamia, and establish whether increased flower visitation leads to higher nut set. A gradient of bee visitation rates was created by placing colonies on the ends of a four-hectare block, and mixed-effect models were applied to assess forager abundance and nut set with respect to distance from hive, time of day, cultivar, and floral display size. Distance from colony had a strong effect on stingless bee numbers, with >96% of individuals recorded within 100 metres of colonies, whereas the distribution of honey bees was more closely related to daily floral display: trees with greater numbers of flowers attracted more honey bees. Simplified surveys conducted in a further 17 macadamia blocks confirm that these are broadly occurring distribution patterns. Bee abundance alone did not significantly predict nut production; however, an indirect effect of bee visits to flowers is inferred, as nut production increased with size of floral display. To encourage a more even distribution of bees and uniform pollination, we recommend placement of stingless bee hives to maximise their distribution through a block (e.g. at 100-m intervals) and management practices that promote even distributions of flowers across trees.  相似文献   

3.
Plant–pollinator interactions are one of the most important and variable mutualisms having major implications for plant fitness. The present study evaluates the interactions between an endemic milkwort, Polygala vayredae, and its floral visitors by studying the temporal variability, foraging behaviour and effectiveness of floral visitors in three populations during three consecutive years. The flowers were visited by a diverse array of insects, totalling 24 different species. However, only four species were effective pollinators, depositing pollen on stigmas after one visit, while the remaining species behaved as nectar robbers, secondary nectar robbers or nectar thieves and were completely ineffective for pollination. Among the effective pollinators, two groups with distinct foraging behaviours were observed: the nectar collecting long-tongued bees Bombus pascuorum and Anthophora sp. and the pollen collectors Eucera longicornis and Halictus sp. No significant differences were observed among pollinators in their efficiency in pollen deposition on stigmas, but significant differences were observed in the foraging behaviour between nectarivorous and pollen collectors. Variation in the abundance and assemblage of floral visitors was observed at the temporal scale and among populations, with the effective pollinators being generally scarce. Consequently, the reproductive outcome in this species was low and significantly variable among populations and years. The results highlight the importance of studying floral visitor effectiveness when determining pollinator assemblages.  相似文献   

4.
The interaction between floral visitors and plants in natural ecosystems has become a major subject in studies on biodiversity conservation. However, there is a very complex interaction between the community of floral visitors and the plant species foraged by them in the natural environment and little is known about the foraging activity of these visitors. Thus, the objective of this study was to determine the composition of the community of floral visitors to Sparattosperma leucanthum in an area under natural regeneration, focusing on the assessment of the exploitation of floral resources by the predominant visitors and effective pollinators. To accomplish this objective, we recorded the activity and behavior of the floral visitors throughout the day in a 2- to 3-m2 area of flowering branches of S. leucanthum. The model established in the current study comprises the occurrence of a high number of species with few individuals, whereas few species are represented by many individuals. The five predominant species were Apis mellifera, Trigona spinipes, Bombus sp1, Hylocharis chrysura, and Halictidae type 1. Of these species, only Bombus sp1 seemed to effectively pollinate the flowers.  相似文献   

5.
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.  相似文献   

6.
Many Acacia species in arid areas of eastern Australia have been severely impacted by grazing, habitat degradation and fragmentation. These factors have been at the core of proposed explanations for the reproductive failure and numerical decline of Acacia carneorum and other threatened acacias. Paradoxically, the sympatric Acacia ligulata is thriving and highly fecund. Although these species have superficially similar floral displays, differences in sexual reproductive success may reflect interactions between flower and inflorescence ontogeny and pollinator assemblages. We compared the floral biology and flower visitor assemblages of A. carneorum and A. ligulata at four sites per species. Both species displayed similar floral ontogeny and synchronicity of display, with inflorescences simultaneously hermaphroditic for 4–5 days. However, A. ligulata displayed a higher density of flowers than A. carneorum and, while both species received a range of flower visitors, A. ligulata was visited by relatively few species and was serviced primarily by the non-native honeybee Apis mellifera, which typically made many within-plant movements during foraging bouts. In contrast, A. carneorum was visited by a diverse suite of native insects that carried little pollen and made fewer within plant movements. On average, Apis mellifera carried 98.4 % A. ligulata pollen, whereas the native insect visitors of A. carneorum carried only 45 % A. carneorum pollen. Differing floral ontogeny or lack of native pollinators does not explain the reproductive failure of A. carneorum. The success of A. ligulata may reflect pollination services provided by A. mellifera and interactions with plant mating systems.  相似文献   

7.
8.
Ecological dominance in ants is often fuelled by carbohydrate intake. Most studies have focused on the importance of invasive ant mutualistic associations with trophobionts whereas few studies have investigated the importance of floral nectar on invasion success. In this study, utilisation of temporarily available floral nectar by the invasive Argentine ant, Linepithema humile, was compared to that of the dominant native ant, Anoplolepis custodiens, within the Cape Floristic Region (CFR), a biodiversity hotspot. The effect of these two focal ant species on species composition and abundance of ground foraging ants as well as floral arthropod visitors in inflorescences of Proteacea species was assessed. Foraging activity, and trophic ecology inferred from the abundance of natural stable isotopes of Carbon (δ13C) and Nitrogen (δ15N), and the ratio of Carbon to Nitrogen (C:N) were compared between the two ant species during three flowering periods. Linepithema humile significantly reduced the abundance and species diversity of both above-ground and floral arthropod species abundance and composition. Linepithema humile increased its foraging activity with increasing nectar availability, switching its diet to a more herbivorous one. Anoplolepis custodiens did not respond as effectively to increasing floral nectar or negatively impact floral arthropod visitors. This study showed that the availability of floral nectar and ability of L. humile to more effectively utilise this temporarily available resource than native ants, can contribute significantly to the further spread and persistence of L. humile in natural environments in the CFR.  相似文献   

9.
In response to global declines in bee populations, several studies have focused on floral resource provisioning schemes to support bee communities and maintain their pollination services. Optimizing host-plant selection for supplemental floral provisioning requires an understanding of bee foraging behavior and preferences for host-plant species. However, fully characterizing these preferences is challenging due to multiple factors influencing foraging, including the large degree of spatiotemporal variability in floral resources. To understand bee pollen foraging patterns, we developed a highly controlled mechanistic framework to measure pollen foraging preferences of the bumble bee Bombus impatiens to nine plant species native to Pennsylvania. We recorded continuous observations of foraging behavior of the experimental bee community and individual bees, while simultaneously standardizing for the number of foragers in the environment and differences in floral display of each plant species, while controlling for flowering phenology such that bees only foraged when all plant species’ flowers were open. Our results demonstrate that B. impatiens exhibit predictable daily patterns in their pollen foraging choices, and their preferences are dominated by the host-plants they visit first. We hypothesize that these patterns at the community and individual levels are driven by the interplay between pollen abundance and quality. We recommend that daily cycles of host-plant visitation be considered in future studies to ensure precise and accurate interpretations of host-plant preference. Such precision is critical for comprehensive analyses of the proximate and ultimate mechanisms driving bee foraging behavior and the selection of host-plant species to use in habitat restoration protocols.  相似文献   

10.
To provide replicate samples of local bee populations in a nature preserve, light traps operated continuously on Barro Colorado Island (BCI), Panama, collected bees for 17 years, including 10 years following invasion by African Apis mellifera. Honey bees appeared in light traps as the first swarms colonized the Panama Canal area. Their numbers followed seasonal trends shown in inde-pendent studies, thus indicating bee abundance and activity in a large area. No measurable population-level impact of competition between this invading honey bee and native bees, despite many demonstrations of resource competition at flower patch and colony levels, changed annual abundances of all 15 native bee species. Native bee abundance did not decrease, nor did native bees show substantial reciprocal yearly change with honey bee abundance. One strong negative correlation of bee catches with an extremely rainy year was found. However, multiple regression using rainfall and honey bee abundance as the independent variables showed that neither was responsible for bee population change over 17 years. Nearly half the native species declined during a year that displayed peak honey bee number. That competition from honey bees on an island the size of BCI was necessarily reduced below impact levels expected on the mainland is discussed using a model of resource and consumer density, foraging range, and island size.  相似文献   

11.
Despite the global trend in urbanization, little is known about patterns of biodiversity or provisioning of ecosystem services in urban areas. Bee communities and the pollination services they provide are important in cities, both for small-scale urban agriculture and native gardens. To better understand this important ecological issue, we examined bee communities, their response to novel floral resources, and their potential to provide pollination services in 25 neighborhoods across Chicago, IL (USA). In these neighborhoods, we evaluated how local floral resources, socioeconomic factors, and surrounding land cover affected abundance, richness, and community composition of bees active in summer. We also quantified species-specific body pollen loads and visitation frequencies to potted flowering purple coneflower plants (Echinacea purpurea) to estimate potential pollination services in each neighborhood. We documented 37 bee species and 79 flowering plant genera across all neighborhoods, with 8 bee species and 14 flowering plant genera observed on average along each neighborhood block. We found that both bee abundance and richness increased in neighborhoods with higher human population density, as did visitation to purple coneflower flower heads. In more densely populated neighborhoods, bee communities shifted to a suite of species that carry more pollen and are more active pollinators in this system, including the European honey bee (Apis mellifera) and native species such as Agapostemon virescens. More densely populated neighborhoods also had a greater diversity of flowering plants, suggesting that the positive relationship between people and bees was mediated by the effect of people on floral resources. Other environmental variables that were important for bee communities included the amount of grass/herbaceous cover and solar radiation in the surrounding area. Our results indicate that bee communities and pollination services can be maintained in dense urban neighborhoods with single-family and multi-family homes, as long as those neighborhoods contain diverse and abundant floral resources.  相似文献   

12.
Reclamation of coal mine lands in the eastern United States creates pockets of grassland habitat in an otherwise predominantly forested region. These sites may represent an opportunity for pollinator conservation if they provide valuable foraging habitat for wild bees. To determine site characteristics that influence bee success on reclamation lands, we monitored growth and reproduction of 24 commercially reared bumble bee (Bombus impatiens) colonies placed on 12 former coal mines (aged 2 to 30+ years post‐reclamation) in Ohio, U.S.A. Twenty colonies survived the duration of the experiment (May–August 2014). All colonies produced both new queens (mean 21.0 ± 37.0 SD) and males (36.5 ± 36.5), in proportion to overall colony size. Results of generalized linear models indicate that colony growth and reproduction increased with floral diversity and species turnover, and declined with site area and the proportion of forest in the surrounding landscape. The sex ratio of reproductive offspring was significantly more male‐biased on sites with low flower diversity, underscoring the importance of floral diversity for meeting the higher resource demands of queen production. Floral resource composition and consistency were influenced by site age and surrounding landscape. Older sites had higher floral diversity and species turnover throughout the season than younger sites, and included high‐quality native bee forage plants. We discuss the implications of this study for reclamation project managers seeking to promote bee reproduction and conservation.  相似文献   

13.
For insect-pollinated plant species, reproductive success and genetic exchange via the transfer of pollen between flowers depends (i.a.) on the efficiency, abundance and behaviour of floral visitors. These in turn are expected to respond to plant population size and flower density. High floral densities for example usually attract large numbers of pollinators that visit more flowers per plant or patch, which increases pollen deposition at short distances. Thus, population characteristics might serve as indicators for pollen dispersal patterns and help to identify suitable habitat size and quality for conservation measures. To test this hypothesis, we observed floral visitors of a generalist, entomophilous species, Comarum palustre, and compared their abundance and visitation rates in populations of different sizes and flower densities. At the same time, we mimicked pollen flow using fluorescent dye. In the large and dense populations, pollinator abundance and visitation rates were high and dye was dispersed to the edges of the populations (up to 200 m). In the medium-sized population with high flower density, insect abundance and visitation rates were unexpectedly low and dye dispersal declined very quickly. On the contrary, in the smallest population with scattered flowers, especially bumble bee abundance was similar to the large populations and dye dispersal mirrored this high bumble bee activity. Thus, our results indicate that in smaller habitat fragments, the mere size of a population might be insufficient to suggest pollen flow for a plant species. Instead, the abundance of its major pollinators should be considered.  相似文献   

14.
In this study, the daily and seasonal influences of abiotic factors and the amount of floral resources on the foraging frequency of bees were determined. The experiments were performed, during 12 consecutive months, in the main floral sources used by bees in a secondary forest fragment. The foraging frequency of each bee species on flowers of each plant was recorded for 20-min periods, every hour. To verify whether the foraging activity is influenced by abiotic factors, Pearson’s correlation analysis and linear regression tests were performed for the dominant bee species. Temperature and luminosity were the two main abiotic factors regulating foraging activities of bees. A positive correlation was found between the foraging frequency of most bees and these two variables. Conversely, the foraging activity was influenced neither by the relative humidity nor by the wind speed. The activity of each species depends on a combination of factors that include not only abiotic variables, but also the amount of floral resources available during the day, body size, and behavior of each visitor. After a certain period of the day, the scarcity of floral resources produced by most plants can stimulate the bees to forage in the flowers early in subsequent days, which may occur before the period in which the abiotic conditions are really favorable.  相似文献   

15.
The aim of this study was to investigate the bee fauna foraging on Thymus longicaulis flowers. Samplings were conducted walking along a transect during the T. longicaulis blooming period (April–June). A total of 547 bee specimens, belonging to 40 different species, were recorded during the survey. Apis mellifera and Bombus terrestris were the most abundant visitors that foraged on thyme. Pollen grains collected on the bodies of the bees suggest that these pollinators may play an important role in the pollination of this plant.  相似文献   

16.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

17.
Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata’s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.  相似文献   

18.
Solitary bees often form specialised mutualisms with particular plant species, while honeybees are considered to be relatively opportunistic foragers. Thus, it may be expected that solitary bees are more effective pollinators than honeybees when foraging on the same floral resource. To test this, we studied two Wahlenbergia species (Campanulaceae) in South Africa that are visited by both social honeybees and solitary bees, and which are shown here to be genetically self-incompatible and thus reliant on pollinator visits for seed production. Contrary to expectation, the solitary bee Lipotriches sp. (Halictidae) and social bee Apis mellifera (Apidae), which were the two most frequent visitors to flowers of the study species, were equally effective pollinators in terms of the consequences of single visits for fruit and seed set. Both bee species preferentially visited female phase flowers, which contain more nectar than male phase flowers. Male solitary bees of several genera frequently shelter overnight in flowers of both Wahlenbergia species, but temporal exclusion experiments showed that this behaviour makes little contribution to either seed production or pollen dispersal (estimated using a dye particle analogue). Manipulation of flower colour using a sunscreen that removed UV reflectance strongly reduced visits by both bee groups, while neither group responded to Wahlenbergia floral odour cues in choice tests. This study indicates that while flowers of Wahlenbergia cuspidata and W. krebsii are pollinated exclusively by bees, they are not under strong selection to specialise for pollination by any particular group of bees.  相似文献   

19.
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

20.
For reciprocal specialization (coevolution) to occur among floral visitors and their host plants the interactions must be temporally and spatially persistent. However, studies repeatedly have shown that species composition and relative abundance of floral visitors vary dramatically at all spatial and temporal scales. We test the hypothesis that, on average, pollen specialist bee species occur more predictably at their floral hosts than pollen generalist bee species. Taxonomic floral specialization reaches its extreme among species of solitary, pollen-collecting bees, yet few studies have considered how pollen specialization by floral visitors influences their spatial constancy. We test this hypothesis using an unusually diverse bee guild that visits creosote bush (Larrea tridentatd), the most widespread, dominant plant of the warm deserts of North America. Twenty-two strict pollen specialist and 80 + generalist bee species visit Larrea for its floral resources. The sites we sampled were separated by 0.5 to > 1450 km, and spanned three distinct deserts and four vegetation zones. We found that species of Larrea pollen specialist bees occurred at more sites and tended to be more abundant than generalists. Surprisingly, spatial turnover was high for both pollen specialist and generalist bee species at all distances, and species composition of samples from sites 1–5 km apart varied as much as repeat samples made at single sites. Nevertheless, the pattern of bee species turnover was not haphazard. As distance among sites increased faunal similarity of sites decreased. Faunal similarities among sites within 250 km of each other were generally greater than if randomly distributed over all sites (the null model). No single ecological category of species (widespread, localized, Larrea pollen specialist, floral generalist) accounted for this spatial predictability. Evidently, concordant local distribution patterns of many ecologically diverse species contribute to the non-random spatial pattern. The ecological dominance of creosote bush does not confer obvious ecological advantages to its specialist floral visitors. Spatial turnover is comparable to that found for bee guilds from other biogeographic regions of the world and is not therefore limited to those bee species that inhabit highly seasonal climates, such as deserts. Philopatry and differences in bloom predictability among sites are probably more important causes for spatial turnover of bee species than are interspecific competition for nest sites or floral resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号