首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A chitinase-producing bacterium, designated WS7b, was isolated from a soil sample obtained from a black-pepper plantation on Bangka Island, Indonesia. Fatty-acid methyl-ester analysis indicated that the isolate was Aeromonas caviae. A chitinase gene from WS7b was cloned in a pUC19-based plasmid vector, but without its natural promoter. The complete nucleotide sequence of the gene was determined, and the structural gene consisted of a 2748-bp region encoding 864 amino acids. DNA sequence analysis indicated that the gene had been cloned without its promoter, and this was confirmed by chitinase-plate assay of the truncated version of the gene in Escherichia coli. The chitinase gene product showed amino-acid sequence similarity to chiA from A. caviae. Chitinase enzyme activity was determined spectrophotometrically, using colloidal chitin azure as substrate for extracellular and intracellular fractions. The ability of the chitinase cloned in E. coli to hydrolyze chitin was less than that of the enzyme in its indigenous host.  相似文献   

3.
Sequence comparison showed that residues Thr407, Asp433, and Met464 in the small subunit of Escherichia coli gamma-glutamyltranspeptidase (EcGGT) were conserved in the aligned enzymes. In this study, we further investigated the functional significance of these conserved residues by site-directed mutagenesis. The wild-type and mutant enzymes were overexpressed in the recombinant E. coli M15 cells and purified to near homogeneity by Ni2+-NTA resin. Except M464L, other mutants had shown no GGT activity under enzyme assay conditions and activity staining. Furthermore, mutations on these residues impaired the capability of autocatalytic processing of the enzyme. Based on these observations, it is concluded that these residues play an important role in the enzyme maturation.  相似文献   

4.
A G561 mutant of the Aeromonas caviae chitinase ChiA was made by PCR site-directed deletion mutagenesis in order to study the role of the 304 C-terminal amino acid residues of ChiA in the enzymatic hydrolysis of chitin. The recombinant ChiAG561 encoded on a 1.6-kb DNA fragment of A. caviae chiA was expressed in a heterologous Escherichia coli host using the pET20b(+) expression system. The His-Tag-affinity-purified recombinant ChiAG561 had a calculated molecular mass of 63,595 Da, which was consistent with the 67,000 Da estimated by SDS-PAGE. The G561 deletion mutant enzyme had the same optimum pH (6.5) as the full-length ChiA and a lower optimum temperature (37 degrees C instead of 42.5 degrees C). Biochemical properties of the recombinant ChiAG561 suggested that deletion of the 304 C-terminal amino acid residues of ChiA did not significantly affect ChiA enzyme activity. However, compared to the full-length ChiA, the mutant chitinase had a ten-fold higher relative activity with 4-methylumbelliferyl-N-N'-N"-triacetylchitotriose [4-MU-(GlcNAc)3] as a substrate, and higher rates of hydrolysis with both chitin and colloidal chitin substrates. Results obtained from this study suggest that the active region of A. caviae ChiA is located in the region before G561 of the protein molecule.  相似文献   

5.
The survival of mesophilic Aeromonas spp. in soil in the presence or absence of indigenous microflora was evaluated in a laboratory study. Two cytotoxic ( Aer. hydrophila and Aer. caviae ) and one invasive ( Aer. sobria ) clinical isolate strains were selected for this study. After contamination of sterile or unsterilized soil with the three strains of Aeromonas , the number of living cells was determined over at least 5 months. For all strains the survival curves were characterized by an initial re-growth followed by a slow inactivation of bacteria, with significant differences due to the presence of indigenous microflora. The times necessary to achieve a 95% reduction of the initial population were > 140, 113 and 62 d in sterilized soil respectively for Aer. caviae, Aer. hydrophila and Aer. sobria , while the corresponding times in unsterilized soil were 42, 38 and 11 d. All strains preserved the virulence factors for the entire period of the study. These results suggest that the soil may be an important reservoir for Aeromonas spp. and, thus, may play an important role in the epidemiology of Aeromonas -associated human infections.  相似文献   

6.
Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.  相似文献   

7.
The functional contributions of amino acid residues Thr218 and Asp304 of chymosin, both of which are highly conserved in the aspartic proteinases, are analysed by means of site-directed mutagenesis. The optimum pH values, milk-clotting (C) and proteolytic (P) activities and kinetic parameters for synthetic oligopeptides as substrates were examined for the mutant enzymes. The mutation Thr218Ser caused a marked increase in the C/P ratio, which seemed to be due to a change in substrate recognition. Although the negative charge of Asp304 had been expected to play a role in lowering the optimum pH values in the aspartic proteinases, this turned out not to be the case in chymosin because both the mutations Asp304Ala and Asp304Glu caused a similar shift of the optimum pH towards the acidic side. In addition, the mutation Lys220Leu, which we generated previously, was found to cause a decrease in the C/P ratio, mainly due to the increase in the proteolytic activity.  相似文献   

8.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

9.
Mutagenesis of H-68 or -148 in Clostridium perfringens alpha-toxin resulted in complete loss of hemolytic, phospholipase C, sphingomyelinase, and lethal activities of the toxin. These activities of the variant toxin at H-126 or -136 decreased by approximately 100-fold of the activities of the wild-type toxin. Mutation at H-46, -207, -212, or -241 showed no effect on the biological activities, indicating that these residues are not essential for these activities. The variant toxin at H-11 was not detected in culture supernatant and in cells of the transformant carrying the variant toxin gene. Wild-type toxin and the variant toxin at H-148 bound to erythrocytes in the presence of Ca2+; however, the variant toxins at H-68, -126, and -136 did not. Co2+ and Mn2+ ions stimulated binding of the variant toxin at H-68, -126, and -136 to membranes in the presence of Ca2+ and caused an increase in hemolytic activity. Wild-type toxin and the variant toxins at H-68, -126, and -136 contained two zinc atoms in the molecule. Wild-type toxin inactivated by EDTA contained two zinc atoms. These results suggest that wild-type toxin contains two tightly bound zinc atoms which are not coordinated to H-68, -126, and -136. The variant toxin at H-148 possessed only one zinc atom. Wild-type toxin and the variant toxin at H-148 showed [65Zn]2+ binding, but the variant toxins at H-68, -126, and -136 did not. Furthermore, [65Zn]2+ binding to wild-type toxin was competitively inhibited by unlabeled Zn2+, Co2+, and Mn2+. These results suggest that H-68, -126, and -136 residues bind an exchangeable and labile metal which is important for binding to membranes and that H-148 tightly binds one zinc atom which is essential for the active site of alpha-toxin.  相似文献   

10.
Three cysteine residues, which are completely conserved among alpha-subunits in all nitrile hydratases, are thought to be the ligands of a metal ion in the catalytic center of this enzyme. These cysteine residues (i.e. alpha C102, alpha C105 and alpha C107) in the high-molecular-mass nitrile hydratase (H-NHase) of Rhodococcus rhodochrous J1 were replaced with alanine by site-directed mutagenesis using the R. rhodochrous ATCC12674 host-vector system, and the resultant transformants were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for the cell-free extracts of each mutant transformant revealed that four mutant transformants (i.e. alpha C105A, alpha C107A, alpha C102A/C105A and alpha C105A/C107A) showed predominant alpha- and beta-subunit protein bands with a mobility identical to those of the native H-NHase, while three mutant transformants (i.e. alpha C102A, alpha C102A/C107A and alpha C102A/C105A/C107A) did not produce the corresponding proteins. The purified former four mutant enzymes showed neither enzymatic activity nor the maximum absorption at 410 nm which was detected in the wild type H-NHase. They also did not contain cobalt ions. Based upon these findings, these three cysteine residues were found to be essential for the active expression of H-NHase.  相似文献   

11.
Squalene epoxidase catalyzes the conversion of squalene to (3S)2,3-oxidosqualene, which is a rate-limiting step of the cholesterol biogenesis. To evaluate the importance of conserved aromatic residues, 15 alanine-substituted mutants were constructed and tested for the enzyme activity. Except F203A, all the mutants significantly lost the enzyme activity, confirming the importance of the residues, either for correct folding of the protein, or for the catalytic machinery of the enzyme. Further, interestingly, F223A mutant no longer accepted (3S)2,3-oxidosqualene as a substrate, while Y473A mutant converted (3S)2,3-oxidosqualene to (3S,22S)2,3:22,23-dioxidosqualene twice more efficiently than wild-type enzyme. It is remarkable that the single amino acid replacement yielded mutants with altered substrate and product specificities. These aromatic residues are likely to be located at the substrate-binding domain of the active-site, and control the stereochemical course of the enzyme reaction.  相似文献   

12.
Chitinase is an enzyme used by insects to degrade the structural polysaccharide, chitin, during the molting process. Tryptophan 145 (W145) of Manduca sexta (tobacco hornworm) chitinase is a highly conserved residue found within a second conserved region of family 18 chitinases. It is located between aspartate 144 (D144) and glutamate 146 (E146), which are putative catalytic residues. The role of the active site residue, W145, in M. sexta chitinase catalysis was investigated by site-directed mutagenesis. W145 was mutated to phenylalanine (F), tyrosine (Y), isoleucine (I), histidine (H), and glycine (G). Wild-type and mutant forms of M. sexta chitinases were expressed in a baculovirus-insect cell line system. The chitinases secreted into the medium were purified and characterized by analyzing their catalytic activity and substrate or inhibitor binding properties. The wild-type chitinase was most active in the alkaline pH range. Several of the mutations resulted in a narrowing of the range of pH over which the enzyme hydrolyzed the polymeric substrate, CM-Chitin-RBV, predominantly on the alkaline side of the pH optimum curve. The range was reduced by about 1 pH unit for W145I and W145Y and by about 2 units for W145H and W145F. The W145G mutation was inactive. Therefore, the hydrophobicity of W145 appears to be critical for maintaining an abnormal pKa of a catalytic residue, which extends the activity further into the alkaline range. All of the mutant enzymes bound to chitin, suggesting that W145 was not essential for binding to chitin. However, the small difference in Km's of mutated enzymes compared to Km values of the wild-type chitinase towards both the oligomeric and polymeric substrates suggested that W145 is not essential for substrate binding but probably influences the ionization of a catalytically important group(s). The variations in kcat's among the mutated enzymes and the IC50 for the transition state inhibitor analog, allosamidin, indicate that W145 also influences formation of the transition state during catalysis.  相似文献   

13.
The spatiotemporal dynamics of Aeromonas spp. and fecal coliforms in the sewage treatment ponds of an urban wastewater center were studied after 20 months of sampling from five stations in these ponds. Isolation and identification of 247 Aeromonas strains were undertaken over four seasons at the inflow and outflow of this pond system. The hemolytic activity of these strains was determined. The Aeromonas spp. and the fecal coliform distributions showed seasonal cycles, the amplitude of which increased at distances further from the wastewater source, so that in the last pond there was an inversion of the Aeromonas spp. cycle in comparison with that of fecal coliforms. The main patterns in these cycles occurred simultaneously at all stations, indicating control of these bacterial populations by seasonal factors (temperature, solar radiation, phytoplankton), the effects of which were different on each bacterial group. The analysis of the Aeromonas spp. population structure showed that, regardless of the season, Aeromonas caviae was the dominant species at the pond system inflow. However at the outflow the Aeromonas spp. population was dominated by A. caviae in winter, whereas Aeromonas sobria was the dominant species in the treated effluent from spring to fall. Among the Aeromonas hydrophila and A. sobria strains, 100% produced hemolysin; whereas among the A. caviae strains, 96% were nonhemolytic.  相似文献   

14.
The cDNA encoding Taka-amylase A (EC.3.2.1.1, TAA) was isolated to identify functional amino acid residues of TAA by protein engineering. The putative catalytic active-site residues and the substrate binding residue of TAA were altered by site-directed mutagenesis: aspartic acid-206, glutamic acid-230, aspartic acid-297, and lysine-209 were replaced with asparagine or glutamic acid, glutamine or aspartic acid, asparagine or glutamic acid, and phenylalanine or arginine, respectively. Saccharomyces cerevisiae strain YPH 250 was transformed with the expression plasmids containing the altered cDNA of the TAA gene. All the transformants with an expression vector containing the altered cDNA produced mutant TAAs that cross-reacted with the TAA antibody. The mutant TAA with alteration of Asp206, Glu230, or Asp297 in the putative catalytic site had no alpha-amylase activity, while that with alteration of Lys209 in the putative binding site to Arg or Phe had reduced activity.  相似文献   

15.
The spatiotemporal dynamics of Aeromonas spp. and fecal coliforms in the sewage treatment ponds of an urban wastewater center were studied after 20 months of sampling from five stations in these ponds. Isolation and identification of 247 Aeromonas strains were undertaken over four seasons at the inflow and outflow of this pond system. The hemolytic activity of these strains was determined. The Aeromonas spp. and the fecal coliform distributions showed seasonal cycles, the amplitude of which increased at distances further from the wastewater source, so that in the last pond there was an inversion of the Aeromonas spp. cycle in comparison with that of fecal coliforms. The main patterns in these cycles occurred simultaneously at all stations, indicating control of these bacterial populations by seasonal factors (temperature, solar radiation, phytoplankton), the effects of which were different on each bacterial group. The analysis of the Aeromonas spp. population structure showed that, regardless of the season, Aeromonas caviae was the dominant species at the pond system inflow. However at the outflow the Aeromonas spp. population was dominated by A. caviae in winter, whereas Aeromonas sobria was the dominant species in the treated effluent from spring to fall. Among the Aeromonas hydrophila and A. sobria strains, 100% produced hemolysin; whereas among the A. caviae strains, 96% were nonhemolytic.  相似文献   

16.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch.  相似文献   

17.
Tyrosine residues of middle-T and tyrosine phosphorylation are thought to be important in the transformation of cultured rodent cells by polyomavirus. Of the potential tyrosine sites in the carboxyl-terminal half of middle-T, tyrosines 297, 315, and 322 have been studied previously, whereas tyrosine 250 has not. Two mutant plasmids, XD121 and pT250, encode polyomavirus middle-T species in which the tyrosine 250 residue is affected. XD121 is a deletion mutant in which the region encoding tyrosine 250, together with three adjacent amino acids, is deleted, whereas pT250 is a point mutant in which the tyrosine 250 codon has been converted to a phenylalanine codon. The plasmids were handicapped in transforming ability, as judged by focus formation on a monolayer of Rat-1 cells. Both demonstrated a reduction in the number of foci produced and a lag in the time of appearance of foci when compared with wild-type plasmid. The importance of residue 250 in this phenotype was indicated by the observation that plasmids containing multiple mutations proximal to the tyrosine 250 codon were wild type in their transforming ability. Furthermore, a revertant of pT250 (pT250-w.t.), which utilized the alternative tyrosine codon of TAC, was shown to regain full transforming activity. A combined-mutant plasmid, pTH, encodes a middle-T species in which both tyrosines 250 and 315 are converted to phenylalanine. This plasmid was totally defective in the transformation of rodent cells in a focus formation assay; however, it did impart a small measure of anchorage-independent growth when the encoded protein was expressed in NIH 3T3 cells. The in vitro kinase activity and pp60c-src association of the mutant middle-T antigens were examined. These assays demonstrated a reduction in phosphate acceptor activity for the middle-T species encoded by pT250 and pTH. Quantitative kinase assays showed that all of the tyrosine-mutant middle-T species, encoded by pAS131 (containing the tyrosine 315 codon-to-phenylalanine codon mutation), pT250, and pTH, were able to enhance pp60c-src kinase activity but only at levels which were intermediate and which reflected their transforming abilities relative to wild type.  相似文献   

18.
Asp176, Glu179 and Glu180 of Aspergillus awamori glucoamylase appeared by differential labeling to be in the active site. To test their functions, they were replaced by mutagenesis with Asn, Gln and Gln respectively, and kinetic parameters and pH dependencies of all enzyme forms were determined. Glu179----Gln glucoamylase was not active on maltose or isomaltose, while the kcat for maltoheptaose hydrolysis decreased almost 2000-fold and the KM was essentially unchanged from wild-type glucoamylase. The The Glu180----Gln mutation drastically increased the KM and moderately decreased the kcat with maltose and maltoheptaose, but affected isomaltose hydrolysis less. Difference in substrate activation energies between Glu180----Gln and wild-type glucoamylases indicate that Glu180 binds D-glucosyl residues in subsite 2. The Asp176----Asn substitution gave moderate increases and decreases in KM and kcat respectively, and therefore similar increases in activation energies for the three substrates. This and the differences in subsite binding energies between Asp176----Asn and wild-type glucoamylases suggest that Asp176 is near subsite 1, where it stabilizes the transition state and interacts with Trp120 at subsite 4. Glu179 and Asp176 are thus proposed as the general catalytic acid and base of pKa 5.9 and 2.7 respectively. The charged Glu180 contributes to the high pKa value of Glu179.  相似文献   

19.
P D Roepe  H R Kaback 《Biochemistry》1989,28(14):6127-6132
By using oligonucleotide-directed, site-specific mutagenesis, each of the 14 Tyr residues in the lac permease of Escherichia coli was replaced with Phe, and the activity of each mutant was studied with respect to active transport, equilibrium exchange, and efflux. Ten of the mutations have no significant effect on permease activity. Of the four mutations that alter activity, replacement of Tyr26 or Tyr336 with Phe severely decreases all modes of translocation, and the binding affinity of the mutant permease for p-nitrophenyl alpha-D-galactopyranoside is markedly decreased (i.e., KD is increased). In addition, the Phe336 mutant permease is inserted into the membrane to a lesser extent than wild-type permease, as judged by immunoblot experiments. Permease containing Phe in place of Tyr236 catalyzes lactose exchange approximately 40% as well as wild-type permease but does not catalyze active transport or efflux. Finally, permease with Phe in place of Tyr382 catalyzes equilibrium exchange normally, but exhibits low rates of active transport and efflux without being uncoupled, thereby suggesting that replacement of Tyr382 with Phe alters a kinetic step involving translocation of the unloaded permease across the membrane.  相似文献   

20.
Four conserved residues of Clostridium thermocellum endoglucanase CelC were replaced by site-directed mutagenesis. Proteins mutated in His-90, Asn-139 and Glu-140 showed strongly reduced activity, in agreement with predictions of sequence alignments. Mutations in Glu-140 did not result in any detectable change in Km, or apparent size, suggesting that Glu-140 is directly involved in catalysis. The pH optimum of the proteins carrying the Glu-140/Ala and Glu140/Gln mutations was lower than that of the wild type, whereas the activity vs. pH profile of Glu-140/Asp CelC was similar to that of the wild type, suggesting that Glu-140 may act as a proton donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号