首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Ramsay  E Freire 《Biochemistry》1990,29(37):8677-8683
The temperature and guanidine hydrochloride (GuHCl) dependence of the structural stability of diphtheria toxin has been investigated by high-sensitivity differential scanning calorimetry. In 50 mM phosphate buffer at pH 8.0 and in the absence of GuHCl, the thermal unfolding of diphtheria toxin is characterized by a transition temperature (Tm) of 54.9 degrees C, a calorimetric enthalpy change (delta H) of 295 kcal/mol, and a van't Hoff to calorimetric enthalpy ratio of 0.57. Increasing the GuHCl concentration lowers the transition temperature and the calorimetric enthalpy change. At the same time, the van't Hoff to calorimetric enthalpy ratio increases until it reaches a value of 1 at 0.3 M GuHCl and remains constant thereafter. At low GuHCl concentrations (0-0.3 M), the thermal unfolding of diphtheria toxin is characterized by the presence of two transitions corresponding to the A and B domains of the protein. At higher GuHCl concentrations (0.3-1 M), the A domain is unfolded at all temperatures, and only one transition corresponding to the B domain is observed. Under these conditions, the most stable protein conformation at low temperatures is a partially folded state in which the A domain is unfolded and the B domain folded. A general model that explicitly considers the energetics of domain interactions has been developed in order to account for the stability and cooperative behavior of diphtheria toxin. It is shown that this cooperative domain interaction model correctly accounts for the temperature location as well as the shape and area of the calorimetric curves. Under physiological conditions, domain-domain interactions account for most of the structural stability of the A domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Spectroscopic, calorimetric, and proteolytic methods were utilized to evaluate the stability of the kinetically stable, differentially glycosylated, dimeric serine protease milin as a function of pH (1.0–11.0), temperature, urea, and GuHCl denaturation in presence of 8 M urea at pH 2.0. The stability of milin remains equivalent to that of native at pH 1.0–11.0. However, negligible and reversible alteration in structure upon temperature transition has been observed at pH 2.0 and with 1.6 M GuHCl. Irreversible and incomplete calorimetric transition with apparent T m > 100°C was observed at basic pH (9.0 and 10.0). Urea-induced unfolding at pH 4.0, and at pH 2.0 with GuHCl, in presence of 8 M urea also reveals incomplete unfolding. Milin has been found to exhibit proteolytic resistant in either native or denatured state against various commercial proteases. These results imply that the high conformational stability of milin against various denaturating conditions enable its potential use in protease-based industries.  相似文献   

3.
We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability.  相似文献   

4.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

5.
Prothrombin denaturation was examined in the presence of Na2EDTA, 5mM CaCl2, and CaCl2 plus membranes containing 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC) in combination with either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-phosphatidylglycerol (DOPG). Heating denaturation of prothrombin produced thermograms showing two peaks, a minor one at approximately 59 degrees C previously reported to correspond to denaturation of the fragment 1 region (Ploplis, V. A., D. K. Strickland, and F. J. Castellino 1981. Biochemistry. 20:15-21), and a main one at approximately 57-58 degrees C, reportedly due to denaturation of the rest of the molecule (prethrombin 1). The main peak was insensitive to the presence of 5mM Ca2+ whereas the minor peak was shifted to higher temperature (Tm approximately 65 degrees C) by Ca2+. Sufficient concentrations of POPC/bovPS (75/25) large unilamellar vesicles to guarantee binding of 95% of prothrombin resulted in an enthalpy loss in the main endotherm and a comparable enthalpy gain in the minor endotherm accompanying an upward shift in peak temperature (Tm approximately 73 degrees C). Peak deconvolution analysis on the prothrombin denaturation profile and comparison with isolated prothrombin fragment 1 denaturation endotherms suggested that the change caused by POPC/PS vesicles reflected a shift of a portion of the enthalpy of the prethrombin 1 domain to higher temperature (Tm approximately 77 degrees C). The enthalpy associated with this high-temperature endotherm increased in proportion to the surface concentration of PS. By contrast, POPC/DOPG (50/50) membranes shifted the prethrombin 1 peak by 4 degrees C to a lower temperature and the fragment 1 peak by 5 degrees C to a higher temperature. The data lead to a hypothesis that the fragment 1 and prethrombin 1 domains of prothrombin do not denature quite independently and that binding of prothrombin to acidic-lipid membranes disrupts the interaction between these domains. It is further hypothesized that PS containing membranes exert the additional specific effect of decoupling the denaturation of two subdomains of the prethrombin 1 domain of prothrombin.  相似文献   

6.
We studied the temperature- and denaturant-induced denaturation of two thermophilic esterases, AFEST from Archeoglobus fulgidus and EST2 from Alicyclobacillus acidocaldarius, by means of circular dichroism measurements. Both enzymes showed a very high denaturation temperature: 99 degrees C for AFEST and 91 degrees C for EST2. They also showed a remarkable resistance against urea; at half-completion of the transition the urea concentration was 7.1 M for AFEST and 5.9 M for EST2. On the contrary, both enzymes showed a weak resistance against GuHCl; at half-completion of the transition the GuHCl concentration was 2.0 M for AFEST and 1.9 M for EST2. The thermodynamic parameters characterizing urea- and GuHCl-induced denaturation of the studied enzymes have been obtained by both the linear extrapolation model and the denaturant binding model. The dependence of the thermal stability on NaCl concentration for both esterases has also been determined. A careful analysis of the data, coupled with available structural information, has allowed the proposal of a reliable interpretation.  相似文献   

7.
The effect of phosphate, its analogues, and other substrates on structural features of recombinant 5'-methylthioadenosine phosphorylase from Sulfolobus solfataricus (SsMTAP) was investigated. Phosphate was found to exert a significant stabilizing effect on the protein against the inactivation caused by temperature, sodium dodecyl sulfate (SDS), urea, and proteolytic enzymes. In the presence of 100 mM phosphate: (i) the apparent transition temperature (Tm) of recombinant SsMTAP increased from 111 degrees to 118 degrees C; and (ii) the enzyme still retained 40% and 30% activity, respectively, after 30 min of incubation at 90 degrees C with 2% SDS or 8 M urea. The structure modification of SsMTAP by phosphate binding was probed by limited proteolysis with subtilisin and proteinase K and analysis of polypeptide fragments by SDS-PAGE. The binding of the phosphate substrate protected SsMTAP against protease inactivation, as proven by the disappearance of a previously accessible proteolytic cleavage site that was localized in the N-terminal region of the enzyme. The conformational changes of SsMTAP induced by phosphate and ribose-1-phosphate were analyzed by fluorescence spectroscopy, and modifications of the protein intrinsic fluorophore exposure, as a consequence of substrate binding, were evidenced.  相似文献   

8.
Hemoglobin Alberta has an amino acid substitution at position 101 (Glu----Gly), a residue involved in the alpha 1 beta 2 contact region of both the deoxy and oxy conformers of normal adult hemoglobin. Oxygen equilibrium measurements of stripped hemoglobin Alberta at 20 degrees C in the absence of phosphate revealed a high affinity (P50 = 0.75 mm Hg at pH 7), co-operative hemoglobin variant (n = 2.3 at pH 7) with a normal Bohr effect (- delta log P50/delta pH(7-8) = 0.65). The addition of inositol hexaphosphate resulted in a decrease in oxygen affinity (P50 = 8.2 mm Hg at pH 7), a slight increase in the value of n and an enhanced Bohr effect. Rapid mixing experiments reflected the equilibrium results. A rapid rate of carbon monoxide binding (l' = 7.0 X 10(5) M-1 S-1) and a slow rate of overall oxygen dissociation (k = 15 s-1) was seen at pH7 and 20 degrees C in the absence of phosphate. Under these experimental conditions the tetramer stability of liganded and unliganded hemoglobin Alberta was investigated by spectrophotometric kinetic techniques. The 4K4 value (the liganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta was found to be 0.83 X 10(-6) M compared to a 4K4 value for hemoglobin A of 2.3 X 10(-6) M, indicating that the Alberta tetramer was less dissociated into dimers than the tetramer of hemoglobin A. The values of 0K4 (the unliganded tetramer-dimer equilibrium dissociation constant) for hemoglobin Alberta and hemoglobin A were also measured and found to be 2.5 X 10(-8) M and 1.5 X 10(-10) M, respectively, demonstrating a greatly destabilized deoxyhemoglobin tetramer for hemoglobin Alberta compared to deoxyhemoglobin A. The functional and subunit dissociation properties of hemoglobin Alberta appear to be directly related to the dual role of the beta 101 residue in stabilizing the tetrameric form of the liganded structure, while concurrently destabilizing the unliganded tetramer molecule.  相似文献   

9.
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change (delta Hcal) of 700 +/- 17 kJ/mol rhodopsin. Bleached rod outer segment disk membranes (membranes that had lost their absorbance at 498 nm after exposure to orange light) gave a single major endotherm with a Tm of 55.9 +/- 0.3 degrees C and a delta Hcal of 520 +/- 17 kJ/mol opsin. Neither bleached nor unbleached rod outer segment disk membranes gave endotherms upon thermal rescans. When thermal stability is examined over the pH range of 4-9, the major endotherms of both bleached and unbleached rod outer segment disk membranes were found to show maximum stability at pH 6.1. The observed delta Hcal values for bleached and unbleached rod outer segment disk membranes exhibit membrane concentration dependences which plateau at protein concentrations beyond 1.5 mg/mL. For partially bleached samples of rod outer segment disk membranes, the calorimetric enthalpy change for opsin appears to be somewhat dependent on the degree of bleaching, indicating intramembrane nearest neighbor interactions which affect the unfolding of opsin. Delta Hcal and Tm are particularly useful for assessing stability and testing for completeness of regeneration of rhodopsin from opsin. Other factors such as sample preparation and the presence of low concentrations of ethanol also affect the delta Hcal values while the Tm values remain fairly constant. This shows that the delta Hcal is a sensitive parameter for monitoring environmental changes of rhodopsin and opsin.  相似文献   

10.
Based on primary structure comparison between four highly homologous DNA-binding proteins (HUs) displaying differential thermostability, we have employed in vitro site-directed mutagenesis to decipher their thermostability mechanism at the molecular level. The contribution of the 11 amino acids that differ between the thermophilic HUBst from Bacillus stearothermophilus (Tm = 61.6 degrees C) and the mesophilic HUBsu from Bacillus subtilis (Tm = 39.7 degrees C) was evaluated by replacing these amino acids in HUBst with their mesophilic counterparts. Among 11 amino acids, three residues, Gly-15, Glu-34, and Val-42, which are highly conserved in the thermophilic HUs, have been found to be responsible for the thermostability of HUBst. These amino acids in combination (HUBst-G15E/E34D/V42I) reduce the thermostability of the protein (Tm = 45.1 degrees C) at the level of its mesophilic homologue HUBsu. By replacing these amino acids in HUBsu with their thermophilic counterparts, the HUBsu-E15G/D34E/142V mutant was generated with thermostability (Tm = 57.8 degrees C) at the level of thermophilic HUBst. Employing the same strategy, we generated several mutants in the extremely thermophilic HUTmar from Thermotoga maritima (Tm = 80.5 degrees C), and obtained data consistent with the previous results. The triplet mutant HUTmar-G15E/E34D/V421 (Tm = 35.9 degrees C) converted the extremely thermophilic protein HUTmar to mesophilic. The various forms of HU proteins were overproduced in Escherichia coli, highly purified, and the thermostability of the mutants confirmed by circular dichroism spectroscopy. The results presented here were elucidated on the basis of the X-ray structure of HUBst and HUTmar (our unpublished results), and their mechanism was proposed at the molecular level. The results clearly show that three individual local interactions located at the helix-turn-helix part of the protein are responsible for the stability of HU proteins by acting cooperatively in a common mechanism for thermostability.  相似文献   

11.
Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.  相似文献   

12.
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex.  相似文献   

13.
Bi Y  Cho JH  Kim EY  Shan B  Schindelin H  Raleigh DP 《Biochemistry》2007,46(25):7497-7505
A hyperstable variant of the small independently folded helical subdomain (HP36) derived from the F-actin binding villin headpiece was designed by targeting surface electrostatic interactions and helical propensity. A double mutant N68A, K70M was significantly more stable than wild type. The Tm of wild type in aqueous buffer is 73.0 degrees C, whereas the double mutant did not display a complete unfolding transition. The double mutant could not be completely unfolded even by 10 M urea. In 3 M urea, the Tm of wild type is 54.8 degrees C while that of the N68AK70M double mutant is 73.9 degrees C. Amide H/2H exchange studies show that the pattern of exchange is very similar for wild type and the double mutant. The structures of a K70M single mutant and the double mutant were determined by X-ray crystallography and are identical to that of the wild type. Analytical ultracentrifugation demonstrates that the proteins are monomeric. The hyperstable mutant described here is expected to be useful for folding studies of HP36 because studies of the wild type domain have sometimes been limited by its marginal stability. The results provide direct evidence that naturally occurring miniature protein domains have not been evolutionarily optimized for global stability. The stabilizing effect of this double mutant could not be predicted by sequence analysis because K70 is conserved in the larger intact headpiece for functional reasons.  相似文献   

14.
In a general approach to the understanding of protein adaptation to high temperature, molecular models of the closely related mesophilic Streptomyces sp. S38 Xyl1 and thermophilic Thermomonospora fusca TfxA family 11 xylanases were built and compared with the three-dimensional (3D) structures of homologous enzymes. Some of the structural features identified as potential contributors to the higher thermostability of TfxA were introduced in Xyl1 by site-directed mutagenesis in an attempt to improve its thermostability and thermophilicity. A new Y11-Y16 aromatic interaction, similar to that present in TfxA and created in Xyl1 by the T11Y mutation, improved both the thermophilicity and thermostability. Indeed, the optimum activity temperature (70 vs. 60 degrees C) and the apparent Tm were increased by about 9 degrees C, and the mutant was sixfold more stable at 57 degrees C. The combined mutations A82R/F168H/N169D/delta170 potentially creating a R82-D169 salt bridge homologous to that present in TfxA improved the thermostability but not the thermophilicity. Mutations R82/D170 and S33P seemed to be slightly destabilizing and devoid of influence on the optimal activity temperature of Xyl1. Structural analysis revealed that residues Y11 and Y16 were located on beta-strands B1 and B2, respectively. This interaction should increase the stability of the N-terminal part of Xyl1. Moreover, Y11 and Y16 seem to form an aromatic continuum with five other residues forming putative subsites involved in the binding of xylan (+3, +2, +1, -1, -2). Y11 and Y16 might represent two additional binding subsites (-3, -4) and the T11Y mutation could thus improve substrate binding to the enzyme at higher temperature and thus the thermophilicity of Xyl1.  相似文献   

15.
The cytosolic NADP+-dependent malic enzyme (c-NADP-ME) has a dimer-dimer quaternary structure in which the dimer interface associates more tightly than the tetramer interface. In this study, the urea-induced unfolding process of the c-NADP-ME interface mutants was monitored using fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation and enzyme activities. Here, we demonstrate the differential protein stability between dimer and tetramer interface interactions of human c-NADP-ME. Our data clearly demonstrate that the protein stability of c-NADP-ME is affected predominantly by disruptions at the dimer interface rather than at the tetramer interface. First, during thermal stability experiments, the melting temperatures of the wild-type and tetramer interface mutants are 8–10°C higher than those of the dimer interface mutants. Second, during urea denaturation experiments, the thermodynamic parameters of the wild-type and tetramer interface mutants are almost identical. However, for the dimer interface mutants, the first transition of the urea unfolding curves shift towards a lower urea concentration, and the unfolding intermediate exist at a lower urea concentration. Third, for tetrameric WT c-NADP-ME, the enzyme is first dissociated from a tetramer to dimers before the 2 M urea treatment, and the dimers then dissociated into monomers before the 2.5 M urea treatment. With a dimeric tetramer interface mutant (H142A/D568A), the dimer completely dissociated into monomers after a 2.5 M urea treatment, while for a dimeric dimer interface mutant (H51A/D90A), the dimer completely dissociated into monomers after a 1.5 M urea treatment, indicating that the interactions of c-NADP-ME at the dimer interface are truly stronger than at the tetramer interface. Thus, this study provides a reasonable explanation for why malic enzymes need to assemble as a dimer of dimers.  相似文献   

16.
A Bertazzon  T Y Tsong 《Biochemistry》1990,29(27):6447-6452
Differential scanning calorimetry (DSC) is unique for studying conformational changes in supramolecular structures because it is immune to interference by the turbidity and other optical artifacts of a sample solution. We have employed DSC to study thermal stability of myosin and actin in their filamentous forms (i.e., thick and thin filaments). The thermal stability of the myosin monomer, as well as polymers, showed remarkable sensitivities to pH and to the ionic strength of the solution. At pH 7.5, the endotherm of myosin filaments was broad and resembled that of the monomer in solution. Reducing the pH to 6.3 split the endotherm of the filament into two major transitions. The first one, with a Tm of 47 degrees C, a delta Hcal of 805 kcal/mol, and a cooperative ratio (CR) of 0.1, was relatively insensitive to the pH changes whereas the second one which represented approximately 80% of the helical structure was pH sensitive. The second transition released 2.17 H+ per mole at 0.17 M KCl and was defined by a Tm of 53.9 degrees C, a delta Hcal of 917 kcal/mol, and a CR of 0.35. The major fragment contributing to the splitting of the endotherm was interpreted to be S-2 because the Tm of purified S-2 in a similar medium also shifted from 39.5 degrees C at pH 7.3 to 49.6 degrees C at pH 6.0. KCl had similar effects on the shape of the endotherm of the thick filament. A decrease of KCl from 0.2 to 0.1 M enhanced the effect of pH on the second transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase (2 degrees ADH) was optimally active near 90 degrees C displaying thermostability half-lives of 1.2 days, 1.7 h, 19 min, 9.0 min, and 1.3 min at 80 degrees C, 90 degrees C, 92 degrees C, 95 degrees C, and 99 degrees C, respectively. Enzyme activity loss upon heating (90-100 degrees C) was accompanied by precipitation, but the soluble enzyme remaining after partial inactivation retained complete activity. Enzyme thermoinactivation was modeled by a pseudo-first order rate equation suggesting that the rate determining step was unimolecular with respect to protein and thermoinactivation preceded aggregation. The apparent 2 degrees ADH melting temperature (T(m)) occurred at approximately 115 degrees C, 20 degrees C higher than the temperature for maximal activity, suggesting that it is completely folded in its active temperature range. Thermodynamic calculations indicated that the active folded structure of the 2 degrees ADH is stabilized by a relatively small Gibbs energy (triangle upG(stab.)(double dagger) = 110 kJ mol(-1)). 2 degrees ADH catalytic activities at 37 degrees C to 75 degrees C, were 2-fold enhanced by guanidine hydrochloride (GuHCl) concentrations between 120 mM and 190 mM. These results demonstrate the extreme resistance of this thermophilic 2 degrees ADH to thermal or chemical denaturation; and suggest increased temperature or GuHCl levels seem to enhance protein fixability and activity.  相似文献   

18.
Structural features of thermozymes   总被引:15,自引:0,他引:15  
Enzymes synthesized by thermophiles and hyperthermophiles are known as thermozymes. These enzymes are typically thermostable, or resistant to irreversible inactivation at high temperatures, and thermophilic, i.e. optimally active at elevated temperatures between 60 and 125 degrees C. Enzyme thermostability encompasses thermodynamic stability and kinetic stability. Thermodynamic stability is defined by the enzyme's free energy of stabilization (deltaG(stab)) and by its melting temperature (Tm). An enzyme's kinetic stability is often expressed as its halflife (t1/2) at defined temperature. DeltaG(stab) of thermophilic proteins is 5-20 kcal/mol higher than that of mesophilic proteins. The thermostability mechanisms for thermozymes are varied and depend on the enzyme; nevertheless, some common features can be identified as contributing to stability. These features include more interactions (i.e. hydrogen bonds, electrostatic interactions, hydrophobic interactions, disulfide bonds, metal binding) than in less stable enzymes and superior conformational structure (i.e. more rigid, higher packing efficiency, reduced entropy of unfolding, conformational strain release and stability of alpha-helix). Understanding of the stabilizing features will greatly facilitate reengineering of some of the mesozymes to more stable thermozymes.  相似文献   

19.
Differential scanning microcalorimetry was used to study thermal stability of the ferro- and ferriforms of hemoglobin at pH 7.4 in phosphate buffer and in buffer mixtures of methanol, ethanol, 1-propanol. Denaturation of the human hemoglobin molecule composed of four subunits was cooperative transition. The thermostability of the hemoglobin forms decreased in the order of carboxyhemoglobin (TD = 82.0 degrees C) > oxyhemoglobin (71.0 degrees C) > methemoglobin (67.0 degrees C). The aliphatic alcohols as cosolvents decreased the hemoglobin stability because of loosening the structure of the globin moiety by disturbing its hydrophobic contacts and hydrogen bonds. These alcohols reduced the oxygen affinity for hemoglobin probably due to perturbation of the R<-->T equilibrium by the decreased bulk dielectric constant of the solvent. Oxyhemoglobin and methemoglobin was converted to hemichrome by high alcohol concentrations.  相似文献   

20.
X-ray structure analysis, IR spectrometry, differential thermal analysis, and viscosimetry have been used to investigate the properties of novel five-component polyhydroxyalkanoates formed by short- and medium-chain-length monomers synthesized by the bacterium Wautersia eutropha B5786. As the molar fraction of hydroxyhexanoate contained in polyhydroxyalkanoates samples increased from 2.5 to 18.0 mol%, their degree of crystallinity decreased from 72 to 57%. The melting temperature of multicomponent polyhydroxyalkanoates (Tm) and their temperature for the onset of decomposition (Td) are lower than those of polyhydroxybutyrate, whose Tm is 168-170 degrees C and Td 260-265 degrees C. In multicomponent polymers (PHA(SC+MC)), both parameters decrease as the molar fraction of hydroxyhexanoate grows to 156 and 252 degrees C, respectively, in the range of hydroxyhexanoate content studied. Hydroxyhexanoate influences the physicochemical properties of polyhydroxyalkanoates similarly to hydroxyvalerate; as the fraction of either of these medium-chain-length monomers in polyhydroxyalkanoates increases, the crystallinity of the polymer decreases, but its thermostability remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号