首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
We have purified cassava (Manihot esculenta) linamarase to apparent homogeneity using a simplified extraction procedure using low pH phosphate buffer. Three isozymes of cassava linamarase were identified in leaves based on differences in isoelectric point. The enzyme is capable of hydrolyzing a number of β-glycosides in addition to linamarin. The enzyme is unusually stable and has a temperature optimum of 55°C. Immunogold labeling studies indicate that linamarase is localized in the cell walls of cassava leaf tissue. Since linamarin must cross the cell wall following synthesis in the leaf for transport to the root, it is likely that linamarin must cross the cell wall in a nonhydrolyzable form, possibly as the diglucoside, linustatin. In addition, we have quantified the levels of linamarin and linamarase activity in leaves of cassava varieties which differ in the linamarin content of their roots. We observed no substantial differences in the steady state linamarin content or linamarase activity of leaves from high or low (root) cyanogenic varieties. These results indicate that the steady state levels of linamarin and linamarase in leaves of high and low cyanogenic varieties are not correlated with the varietal differences in the steady state levels of linamarin in roots.  相似文献   

2.
Summary An enzyme-bound linamarin indicator paper strip was developed which was based on the hydrolysis of linamarin by cassava leaf linamarase and the detection of the cyanide released by alkaline picrate reagent. The linamarase could be stabilized with gelatin or gelatin in combination with polyvinylpyrrolidone-10 or trehalose. A positive reaction was observed within 15 minutes at 37°C and it could detect linamarin concentration as low as 0.5 to 1 mM. The indicator strip could be used to estimate linamarin content in cassava semiquantitatively.  相似文献   

3.
Summary An enzyme-immobilized microplate for determination of linamarin was prepared by covalently linking cassava leaf linamarase to the microplate. For linamarin determination, cassava roots were homogenised in 0.1 Mo-phosphoric acid and the filtrate adjusted to pH 6 with NaOH prior to adding into the wells. The cyanide released was then determined spectrophotometrically. One nmol linamarin can be detected. The microplate method is suitable for analysis of large number of samples and is useful for screening purposes.  相似文献   

4.
Several fungi and bacteria, isolated from Ugandan domestic fermented cassava, released HCN from linamarin in defined growth media. In 72 h, a Bacillus sp. decreased the linamarin to 1% of initial concentrations, Mucor racemosus to 7%, Rhizopus oryzae and R. stolonifer to 30%, but Neurospora sitophila and Geotrichum candidum hardly degraded the linamarin. Adding pectolytic and cellulolytic enzymes, but not linamarase, to root pieces under aseptic conditions, led to root softening and significantly lower linamarin contents. Neurospora sitophila showed no linamarase activity, in contrast to M. racemosus and Bacillus sp., both of which were less effective in root softening and decreasing the root linamarin content. The most important contribution of microorganisms to linamarin decrease in the solid-substrate fermentation of cassava is their cell-wall-degrading activity, which enhances the contact between endogenous linamarase and linamarin.A.J.A. Essers and M.H.J. Bennik were and M.J.R. Nout is with the Department of Food Science, Wageningen Agricultural University, Bomenweg 2, 6703HD Wageningen, The Netherlands. A.J.A. Essers is now with the Department of Toxicology, Wageningen Agricultural University, PO Box 8000, 6700EA Wageningen, The Netherlands; M.H.J. Bennik is now with the Agrotechnological Research Institute, PO Box 17, 6700AA Wageningen, The Netherlands.  相似文献   

5.
6.
When cassava (Manihot esculenta Crantz) root was cut into blocks and incubated under laboratory conditions, the blocks showed more widespread and more even symptoms of physiological deterioration than those under natural conditions. Thus, the tissue block system has potential for biochemical studies of natural deterioration of cassava root. The changes in cyanide content and linamarase (linamarin β-d-glucoside glucohydrolase; EC 3.2.1.21) activity in various tissues during physiological deterioration were investigated. Total cyanide content increased in all parts of block tissue after 3-day incubation. The degree of increase in cyanide was most pronounced in white parenchymal tissue, 2 to 3 millimeters thick, next to the cortex (A-part tissue), where no physiological symptoms appeared. On the other hand, linamarase activity was decreased in all parts of block tissue after a 3-day incubation. A time course analysis of A-part tissue indicated a clear reciprocal relationship between changes in total cyanide and linamarase activity; total cyanide increased, while linamarase activity decreased. Free cyanide constituted a very small portion of the total cyanide and did not change markedly.  相似文献   

7.
Linamarase (EC. 3.2.1.21) was purified from different tissues of cassava (leaf, rind and tuber) to compare the kinetic properties and characteristics of the enzyme in these tissues. Purified enzyme preparation appeared as single band of average molecular size 70 kD in SDS-PAGE gels. The kinetic properties of linamarase with respect to pH and temperature indicated that tuber linamarase possessed a broader pH optimum and higher temperature stability as compared to leaf and rind enzymes. Differences in Km values for linamarin were observed with leaf linamarase having the highest Km value (500 μM) followed by rind (400 μM) and then tuber (250 μM) linamarases. Rind enzyme appeared to be less susceptible to urea denaturation than the leaf enzyme. Comparison of elution profiles from DEAE-Cellulose indicated that the relative amounts of the various ionic forms of the enzyme differed in the case of each tissue. Elution patterns of the enzyme from Con A-Sepharose also differed, suggesting difference in glycosylation among leaf, rind and tuber enzymes. This was confirmed by carbohydrate analysis which showed that the tuber linamarase contained significantly higher amount of protein bound carbohydrate. These results suggest the possible occurrence of different forms of linamarase in cassava.  相似文献   

8.
Summary An enzyme electrode was constructed using cassava leaf linamarase covalently linked via polyethyleneimine to Hybond-N nylon. The nylon-enzyme electrode response was Nerstian for linamarin range of 0.1 to 20 mM. A steady state reading could be obtained within 4 to 6 mins. The nylon-enzyme discs could be reused. Compared to the previously reported enzyme electrode prepared by entrappment of linamarase in ENT-4000 prepolymer resins, the nylon-enzyme electrode gave faster response and could save analysis time by 60%.  相似文献   

9.
Cassava (Manihot esculenta Crantz) is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a major source. A batch adsorption process using activated carbon proved successful in its isolation, with ultrafiltration playing a pivotal role in its purification. Thirty-two minutes of contact time was required for 60 g of extract, yielding 1.7 g of purified product. Picrate paper, infra-red and 1HNMR analysis confirmed the presence and structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29 and HL-60 cells were determined using the MTT assay. Cytotoxic effects were significantly increased in the presence of linamarase (β-glucosidase), with a 10–fold decrease in the IC50 values obtained for HL-60 cells. This study thus describes a method for the isolation and purification of linamarin from cassava, as well as its cytotoxicity potential.  相似文献   

10.
Summary Six out of ten lactic acid bacteria strains tested displayed linamarase activity.Lactobacillus plantarum strain A6 displayed the greatest activity affecting 36U/g cells on MRS cellobiose. The strain also broke down in less than 2 hours the linamarin extracted from cassava juice. HPLC analysis of the products of the reaction showed that the bacteria converted the linamarin into lactic acid and acetone cyanohydrin.  相似文献   

11.
Cassava is the most agronomically important of the cyanogeniccrops. Linamarin, the predominant cyanogenic glycoside in cassava,can accumulate to concentrations as high as 500 mg kg–1fresh weight in roots and to higher levels in leaves. Recently,the pathway of linamarin synthesis and the cellular site oflinamarin storage have been determined. In addition, the cyanogenicenzymes, linamarase and hydroxynitrile lyase, have been characterizedand their genes cloned. These results, as well as studies onthe organ- and tissue-specific localization of linamarase andhydroxy-nitrile lyase, allow us to propose models for the regulationof cyanogenesis in cassava. There remain, however, many unansweredquestions regarding the tissue-specific synthesis, transport,and accumulation of cyanogenic glycosides. The resolution ofthe sequestions will facilitate the development of food processing,biochemical and transgenic plant approaches to reducing thecyanogen content of cassava foods. Key words: Cyanide, cyanogenic glycosides, linamarin, cyanogens  相似文献   

12.
Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.  相似文献   

13.

Background

The killer‐suicide system linamarase/linamarin (lis/lin) uses the plant gene linamarase (β‐glucosidase) to convert the cyanogenic glucoside substrate, linamarin, into glucose and cyanide. We have studied the bystander effect associated with this new system mediated by the production of the cyanide ion that diffuses freely across membranes.

Methods

Immunofluorescent staining of cells treated with an anti‐linamarase antibody allowed us to localize the enzyme within the cells. Flow cytometry was used to determine the sensitivity of different mixtures of cells, C6lis and C6gfp (green), to linamarin as a percentage of cell survival.

Results

We demonstrate here that rat glioblastoma C6 cells carrying the linamarase gene (lis), mixed with naive C6 cells and exposed to linamarin, induce generalized cell death. Cells expressing lis efficiently export linamarase, whereas linamarin enters cells poorly by endocytosis; as a result most of the cyanide is produced outside the cells. The study was facilitated by the presence of the green fluorescent protein (gfp) gene in the bystander population. As few as 10% C6lis‐positive cells are sufficient to eliminate the entire cell culture in 96 h.

Conclusions

This bystander mechanism does not preferentially kill toxic metabolite producer cells compared with bystander cells, thus allowing production of sufficient cyanide to cause tumor regression. In this report we confirm the potential of the lis/lin gene therapy system as a powerful tool to eliminate tumors in vivo. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.
Two cyanogenic beta-glucosidases, linustatinase and linamarase, were isolated and purified from flax seeds (Linum ussitatissimum). They catalyze the sequential hydrolysis of linustatin and neolinustatin to yield acetone and methylethyl ketone cyanohydrins, respectively. The purification procedure for linustatinase involved acetone extraction, precipitation by polyethyleneimine and ammonium sulfate (40-80% saturation), and Red A gel, concanavalin A-Sepharose, and PBE 94 column chromatography; that for linamarase was similar except that polyethyleneimine precipitation was eliminated and DE-52 and Sepharose CL-6B replaced Red A gel column chromatography. The native substrates neolinustatin and linamarin were used for the assay during purification. Both proteins were purified to electrophoretic homogeneity. Linustatinase is an alpha beta dimer (molecular weights of alpha and beta = 39,000 and 19,000, respectively) while linamarase appears to be an alpha 5 beta 5 decamer (molecular weights of alpha and beta = 62,500 and 65,000, respectively). Both enzymes contain mannose or glucose. Linustatinase exists in five different isozymic forms (isoelectric points between 7 and 8) whereas linamarase occurs in one major form (isoelectric point 4 to 5). The kinetic parameters of the two enzymes are similar: acidic pH optima, Km's in the millimolar range, and competitive inhibition by delta-gluconolactone, a transition state analog. The presence of an aglycone structure in the substrates is important for both enzyme activities. In addition, both enzymes are specific towards the beta-glycosidic linkage; linustatinase (a beta-bis-glucosidase) readily hydrolyzes beta-bis-glucosides with 1,6 and 1,3 linkages whereas linamarase (a beta-monoglucosidase) exhibits little activity towards these substrates.  相似文献   

15.
The hypothesis that cyanogenic potential in cassava is a defense mechanism against arthropod pests is one of the crucial questions relevant to current efforts to reduce or eliminate cyanogenic potential (CNP) in cassava. The generalist arthropod Cyrtomenus bergi, which attacks cassava roots, was used in a bioassay relating oviposition and survival to CNP, concentration of nonglycosidic cyanogens, and linamarase (beta-glycosidase) activity in twelve selfed cassava siblings and their parental clone, which has segregated for different levels of cyanogenesis. Electron microscopic evaluation revealed an intracellular pathway of the stylet of C. bergi in the cassava root tissue to rupture cell walls. This feeding behavior causes cyanogenesis and increased linamarin content in the hemolymph of C. bergi while feeding on a cyanogenic diet. This diet resulted in a significant reduction in oviposition, especially at levels of CNP above 150 ppm (expressed as hydrogen cyanide) on fresh weight basis (or 400 ppm on dry weight basis) in cassava roots. An exponential decline in oviposition was observed with increasing levels of CNP, beginning 12 d after exposure to the cyanogenic diet. Cyanogenic potential and dry matter content showed a positive effect on survival. No relationship was found between concentrations of nonglycosidic cyanogens or linamarase activity in the cassava root and either oviposition or survival. According to our results, there is a significant difference between potentially noncyanogen and high cyanogen clones, but there may not be a significant difference between potentially noncyanogen and low cyanogen clones. Consequently, more frequent outbreaks or higher levels of damage might not be anticipated in potentially noncyanogen cassava clones than that anticipated in low cyanogenic clones. The negative effect of cyanogenesis on oviposition concurrent with a positive effect on survival of this pest is most likely the result of a physiological trade-off between survival and oviposition. The question of whether ovipositional rates could be recovered after a long-term exposure to cyanide remains unanswered.  相似文献   

16.
17.
Frehner M  Conn EE 《Plant physiology》1987,84(4):1296-1300
Analysis of mesophyll protoplasts and cell wall extracts of leaf discs of Costa Rican wild lima bean (Phaseolus lunatus L.) shows that the linamarase activity is confined to the apoplast. Its substrate linamarin, together with the related enzyme hydroxynitrile lyase, is found inside the cells. This compartmentation prevents cyanogenesis from occurring in intact tissue, and suggests that linamarin has to be protected during any translocation across the linamarase rich apoplast.  相似文献   

18.
Generation of cyanogen-free transgenic cassava   总被引:3,自引:0,他引:3  
Siritunga D  Sayre RT 《Planta》2003,217(3):367-373
  相似文献   

19.
Dirk Selmar 《Planta》1993,191(2):191-199
The 14C-labelled cyanogenic glucosides linustatin (diglucoside of acetone cyanohydrin) and linamarin (monoglucoside of acetone cyanohydrin), prepared by feeding [14C]valine to plants of Linum usitatissimum L., were applied to cotyledons of Hevea brasiliensis Muell.-Arg. in order to study their transport. Both [14C]-linustatin and [14C]linamarin were efficiently taken up by the cotyledons. Whereas 14C was recovered completely when [14C]linustatin was applied to the seedling, only about one-half of the radioactivity fed as [14C]linamarin could be accounted for after incubation. This observation is in agreement with the finding that apoplasmic linamarase hydrolyzes linamarin but not the related diglucoside linustatin. These data prove that, in vivo, linamarin does not occur apoplasmically and that linustatin, which is exuded from the endosperm, is taken up by the cotyledons very efficiently. Thus, these findings confirm the linustatin pathway (Selmar et al. 1988, Plant Physiol. 86, 711–716), which describes mobilization and transport of the cyanogenic glucoside linamarin, initiated by the glucosylation of linamarin to yield linustatin. When linustatin is metabolized to non-cyanogenic compounds, in Hevea this cyanogenic diglucoside is hydrolyzed by a diglucosidase which splits off both glucose molecules simultaneously as one gentiobiose moiety (Selmar et al. 1988). In contrast, [14C]linustatin, which is taken up by the cotyledon, is not metabolized but is reconverted in high amounts to the monoglucosidic [14C]linamarin, which then is temporarily stored in the cotyledons. These data demonstrate that in Hevea, besides the simultaneous diglucosidase, there must be present a further diglucosidase which is able to hydrolyze cyanogenic diglucosides sequentially by splitting off only the terminal glucose moiety from linustatin to yield linamarin. From this, it is deduced that the metabolic fate of linustatin, which is transported into the source tissues, depends on the activities of the different diglucosidases. Whereas sequential cleavage — producing linamarin — is purely a part of the process of linamarin translocation (using linustatin as the transport vehicle), simultaneous cleavage, producing acetone cyanohydrin, is part of the process of linamarin metabolization in which the nitrogen from cyanogenic glucosides is used to synthesize non-cyanogenic compounds.  相似文献   

20.
The beta-glucosidase, linamarase, which specifically hydrolyzes cyanogenic substrates, linamarin and lotaustralin, in white clover, is synthesized in the early stages of leaf and seedling development in genetically competent plants. Plants, from natural populations, possessing at least one Li allele synthesize linamarase but plants with only li alleles do not, nor do they produce inactive but antigenically related linamarase. Linamarase is known to be a mannosyl glycoprotein, which in its active form is a dimer, with a subunit size of 62,000 Mr. We demonstrate that the antibiotic tunicamycin, which prevents N-acetyl-asparagine linked glycosylation, reduces in vivo synthesis of linarmarase. In vitro translation of mRNA from a Li Li plant yields a 59,000 Mr immunoprecipitated linamarase polypeptide which is modified to a 62,000 Mr product by the addition of dog pancreas microsomes. No anti-linamarase immunoprecipitable product is obtained from the in vitro translation products of mRNA from a li li plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号