首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major ectonucleoside triphosphate phosphohydrolase in the chicken gizzard smooth muscle membranes is an ecto-ATPase, an integral membrane glycoprotein belonging to the E-ATPase (or E-NTPDase) family. The gizzard ecto-ATPase is distinguished by its unusual kinetic properties, temperature dependence, and response to a variety of modulators. Compounds that promote oligomerization of the enzyme protein, i.e., concanavalin A, chemical cross-linking agent, and eosin iodoacetamide, increase its activity. Compounds that inhibit some ion-motive ATPases, e.g., sulfhydryl reagents, xanthene derivatives, NBD-halides, and suramin, also inhibit the gizzard ecto-ATPase, but not another E-ATPase, the chicken liver ecto-ATP-diphosphohydrolase, which contains the same conserved regions as the ecto-ATPase. Furthermore, inhibition of the gizzard ecto-ATPase by these compounds as well as detergents is not prevented by preincubation of the membranes with the substrate, ATP, indicating that their interaction with the enzyme occurs at a locus other than the catalytic site. On the other hand, the inhibitory effect of these compounds, except suramin, is abolished or reduced if the membranes are preincubated with concanavalin A. It is concluded that these structurally unrelated modulators exert their effect by interfering with the oligomerization of the ecto-ATPase protein. Our findings suggest that, under physiological conditions, the gizzard smooth muscle ecto-ATPase may exhibit a range of activities determined by membrane events that affect the status of oligomerization of the enzyme.  相似文献   

2.
Smith TM  Lewis Carl SA  Kirley TL 《Biochemistry》1999,38(18):5849-5857
A human brain E-type ATPase (HB6 ecto-apyrase) was subjected to site-directed mutagenesis to assess the functional significance of two highly conserved tryptophan residues (Trp 187 and Trp 459), the only two tryptophans conserved in nearly all E-type ATPases. Mutation of tryptophan 187 to alanine yielded a poorly expressed ecto-apyrase completely devoid of nucleotidase activity. Immunolocalization of the W187A mutant in mammalian COS cells showed a cellular distribution clearly different from that of the wild-type enzyme, with the majority of the immunoreactivity concentrated in the interior of the cell. Unlike the wild-type enzyme, this mutant did not bind the nucleotide analogue Cibacron Blue and was sensitive to proteolytic digestion by chymotrypsin. These results suggest alteration of the tertiary structure, causing the enzyme to be improperly folded and retained within the cell. In contrast, mutation of tryptophan 459 to alanine resulted in an ecto-apyrase with enhanced NTPase activity, but diminished NDPase activity. Immunolocalization of this active mutant ecto-apyrase revealed a cellular pattern similar to that of the wild-type enzyme, distributed along the cell periphery and in cell processes. Coupling this active W459A mutation to a previously described mutation (D219E) resulted in an enzyme which preferentially hydrolyzes nucleoside triphosphates over diphosphates. The D219E/W459A double mutant had an ATPase:ADPase ratio of 11:1 and a UTPase:UDPase ratio of 148:1. In addition, the double mutant is substantially less sensitive to inhibition by azide, a more potent inhibitor of ecto-apyrases than ecto-ATPases. Thus, mutation of only two amino acids of an E-type ATPase essentially converts an ecto-apyrase to an ecto-NTPase.  相似文献   

3.
Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) is a widely distributed, FAD-containing enzyme that catalyzes the obligatory two-electron reduction of quinones. Cibacron Blue is an inhibitor of this enzyme comparable in potency to dicoumarol. Pure quinone reductase was obtained from the livers of Sudan II (1-[2,4-dimethylphenylazo]-2-naphthol)-treated rats in a single step by Cibacron Blue-agarose chromatography. Cibacron Blue is a competitive inhibitor with respect to NADH (Ki = 170 nM) and is a noncompetitive inhibitor with respect to menadione (Ki = 540 nM). Addition of Cibacron Blue to quinone reductase resulted in a decrease and red shift of the enzyme-bound FAD peak at 450 nm. The titration of the absorbance changes for both FAD and Cibacron Blue could be fitted to curves describing an equilibrium binding equation with a KD of 300 nM and one binding site per enzyme subunit. Furthermore, the Cibacron Blue difference spectrum that resulted from binding to quinone reductase was abolished by dicoumarol. Significant amino acid homology between quinone reductase and the nucleotide binding regions of enzymes that bind to Cibacron Blue was found. These data indicate that Cibacron Blue is a useful ligand for the purification of quinone reductase and a new probe for its NAD(P)H binding site. Conditions for crystallizing rat liver quinone reductase are also described.  相似文献   

4.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

5.
6.
Cibacron Blue, a widely used ligand for affinity chromatography, is a potent inhibitor of NAD(P)H:(quinone-acceptor) oxidoreductase (EC 1.6.99.2) (quinone reductase). This property has been exploited to purify quinone reductase, to identify its nucleotide-binding site, and to obtain diffraction-grade crystals of this enzyme [Prochaska, H. J. (1988) Arch. Biochem. Biophys. 267, 529-538; Ysern, X., & Prochaska, H. J. (1989) J. Biol. Chem. 264, 7765-7767]. To define the structural region(s) of the dye responsible for its inhibitory potency, Cibacron Blue was synthesized and the dye, its synthetic intermediates, and some analogues of these intermediates were crystallized as novel trialkylamine or choline salts. These compounds were characterized by proton NMR and mass spectrometry, and their inhibitory potencies were measured. Only two of the four ring systems of the Cibacron Blue molecule are required for potent inhibition. Acid Blue 25 [1-amino-4-(phenylamino)anthraquinone-2-sulfonic acid] is an inhibitor (Ki = 22 nM) almost as potent as Cibacron Blue (Ki = 6.2 nM). However, removal of any of the three substituents on the anthraquinone ring of Acid Blue 25 markedly reduced inhibitory potency. These results are consistent with the proposal that Cibacron Blue is primarily a mimic for the ADP fragment of mono- and dinucleotides. The difference absorption spectrum of the Acid Blue 25-quinone reductase complex was very different from that of the complex with Cibacron Blue. In contrast to other compounds tested, Procion Blue M-3GS, the electrophilic dichlorotriazine precursor of Cibacron Blue, was an irreversible inhibitor of quinone reductase (KD = 16 nM, k3 = 0.03 min-1), and the inactivation was blocked by Cibacron Blue, a monochlorotriazine.  相似文献   

7.
1. Particulate brain ATPases from various vertebrates were optimally activated by Ca2+, Mg2+ or Mn2+. 2. Specific enzyme activity with AT32P as substrate was low in lower vertebrates and increased on the evolutionary scale. 3. The properties of the brain ATPases suggested that most of the activity was associated with plasma membrane ecto-ATPase.  相似文献   

8.
The interaction between complement component factor B and the triazine dye ligand Cibacron Blue F3G-A coupled to a cross-linked agarose matrix (Blue Sepharose) was found to involve the Bb part of the molecule, and to be inhibited by benzamidine. Human, chicken and rainbow trout factor B which had bound to Blue Sepharose could subsequently be eluted with benzamidine. Other serine proteases (C2, factor II, factor IX, trypsin, chymotrypsin, proteinase 3) also bound to Blue Sepharose but only those belonging to the trypsin family could be eluted with benzamidine. Trypsin treated with the active-site inhibitor phenylmethylsulfonyl fluoride did not bind to Blue Sepharose and pretreatment of Blue Sepharose with benzamidine did not influence binding of proteases. We conclude that trypsin-like serine proteases can be purified on Blue Sepharose and that the interaction of these serine proteases with Blue Sepharose involves the active site of the enzyme.  相似文献   

9.
A comparative study of the ligand-binding properties of human serum albumin was performed by the technique of affinity chromatography with the protein attached to immobilized Cibacron Blue F3GA (Blue Sepharose), or covalently immobilized on Sepharose. The binding strength of octanoate, decanoate and dodecanoate is much weaker when human serum albumin is attached to immobilized Cibacron Blue, indicating that the binding sites for fatty acids are involved in the attachment of human serum albumin to immobilized Cibacron Blue. The results revealed additional alterations of the ligand binding when human serum albumin was attached to immobilized Cibacron Blue, involving sites outside of the binding domains of fatty acids. Thus the stereoselective binding of L-tryptophan was abolished, and the resolution of the warfarin enantiomers was impaired. However, the binding strength of warfarin and salicylic acid was rather close to the values observed with human serum albumin covalently immobilized on Sepharose. It is suggested that the availability of the binding sites for L-tryptophan, warfarin and salicylic acid is partially blocked by the complex between albumin and the dye without direct participation in the complex-formation. An alternative interpretation involves an allosteric mechanism brought about by complex-formation between serum albumin and the immobilized Cibacron Blue.  相似文献   

10.
The interaction of the immobilized triazine dye Cibacron Blue 3G-A with rat, rabbit, sheep, goat, bovine and human serum albumins was studied by affinity gel electrophoresis. Dissociation constants were estimated in each instance and showed human serum albumin to have a significantly higher affinity for the dye than did albumin from any other species. Pretreatment of the defatted proteins with bilirubin (3 mol of bilirubin/mol of protein) did not increase the dissociation constants of the serum albumins, whereas pretreatment with palmitate (7 mol of palmitate/mol of protein) increased the dissociation constant in all cases: 3-fold for human serum albumin, 15-fold for other serum albumins. Increasing the bilirubin/albumin ratio (to 7:1) did not affect the dissociation constant of the albumins studied. Decreasing the palmitate/albumin ratio decreased the dissociation constant for human serum albumin, but did not affect those of bovine and rat albumins. Altering the chain length of the presaturating fatty acid dramatically changed the dissociation constant of both human and bovine serum albumins. Butyrate, hexanoate, octanoate and decanoate did not significantly influence the dissociation constants of bovine and human serum albumins for Cibacron Blue, whereas laurate, myristate and palmitate greatly increased the dissociation constant. These data are discussed in relationship to the behaviour of albumins during dye--agarose column chromatography. In Addendum the effect of nucleotide presaturation on the interaction between Bacillus stearothermophilus 6-phosphogluconate dehydrogenase and the immobilized triazine dyes Cibacron Blue 3G-A and Procion Red HE-3B was examined, and the implications for dye--ligand chromatography are discussed.  相似文献   

11.
The paper deals with a simple and effective procedure for the isolation of calf intestinal alkaline phosphatase (EC 3.1.3.1) with a yield of 35 per cent by employing immobilized Procion Red HD-33 and Cibacron Blue F3G-A, respectively, as dye-ligands. The resulting enzyme is homogeneous and has a specific activity of about 2500 units per mg of protein. Because dye liganded gels are of low costs and can be used several times without loss of binding properties, the presented method is in particular suited for large scale application.  相似文献   

12.
Mouse, hamster, rabbit, horse, and human interferons bind to immobilized Cibacron Blue F3GA under appropriate solvent conditions. Three forms of the immobilized ligand have been investigated: Cibacron Blue F3GA-Sepharose 4B, Blue Dextran-Sepharose 4B and Blue Sepharose CL-6B. The strength of binding of an interferon depends critically on the sorbent: Cibacron Blue F3GA-Sepharose 4B is the weakest in the series and Blue Sepharose CL-6B the strongest. The use of Blue Dextran-Sepharose 4B - a sorbent of intermediate binding properties - allows the complete separation of hamster, mouse and human fibroblast interferons in a single chromatographic step. Indeed, both the resolution, as well as the recovery, of those interferons is complete - regardless of the relative complexity of the chromatographed preparation (containing either crude or purified interferons). Thus, these ligands should prove of considerable use  相似文献   

13.
Enzymes that hydrolyze extracellular ATP, i.e. ecto-ATPase and ecto-ATP diphosphohydrolase (ATPDase), can be differentiated by ability of the latter to hydrolyze ADP and by slightly different kinetic properties of the two enzymes. Synaptic plasma membrane fractions isolated from rat hippocampus and caudate nucleus exhibit ADP-hydrolyzing activity, as revealed by the enzyme assay, and the presence of ecto-ATPase protein, as revealed by immunological identification on Western blot. These findings indicate that both enzymes are co-expressed in the synaptic membrane compartment of hippocampal and caudate nucleus neurons. Kinetic analysis was performed to determine the relative contribution of each enzyme to the total ATP-hydrolyzing activity, while an inhibition study was carried out in order to exclude the interference of other nonspecific ATPase and phosphatase activities. Based on the kinetic properties, sensitivity to inhibitors and V(ATP)/V(ADP) ratio of about 2, we concluded that a substantial portion of ATP-hydrolyzing activity in both synaptic membrane preparations can be ascribed to the catalytic action of ATPDase. On the other hand, the highest catalytic efficacy when ATP is the substrate and the greater abundance of ecto-ATPase protein in caudate nucleus preparation suggest that the relative contribution of ecto-ATPase to the total ATP-hydrolyzing activity in the caudate nucleus is higher than in the hippocampus.  相似文献   

14.
Rat liver spermidine/spermine N1-acetyltransferase was found to be strongly inhibited by the dyes Cibacron F3GA, Coomassie Brilliant Blue and Congo Red. Inhibition was competitive with respect to acetyl-CoA and Ki values of 0.7 microM and 52 microM were determined for Cibacron F3GA and Coomassie Brilliant Blue respectively. The enzyme was strongly retained by columns of Affi-Gel Blue, which contains Cibacron F3GA linked to agarose. It was not eluted from this adsorbent in the presence of 10 mM-spermidine/0.5 M-NaCl/50 mM-Tris/HCl, pH 7.5, but was released by 1 mM-CoA in 10 mM-spermidine/50 mM-Tris/HCl, pH 7.5. These results are consistent with the presence in the enzyme of a dinucleotide fold that binds acetyl CoA and has a high affinity for Cibacron F3GA. The spermidine/spermine N1-acetyltransferase was irreversibly inactivated by exposure to butane-2,3-dione in sodium borate, pH 7.8, or by exposure to phenylglyoxal or camphorquinone-10-sulphonic acid. All of these reagents are known to interact with arginine residues in proteins under the conditions in which they inactivated the acetyltransferase. Inactivation was prevented by the presence of acetyl-CoA or CoA, but to a lesser extent by 3'-dephospho-CoA and not at all by NAD or adenosine. This protection suggests that an arginine residue at the active site is involved in the binding of the acetyl-CoA substrate. Treatment of the assay mixture but not the spermidine N1-acetyltransferase with alkaline phosphatase prevented the reaction taking place. This suggests that the apparent loss of enzyme activity in response to alkaline phosphatase reported by Matsui, Otani, Kamei & Morisawa [(1982) FEBS Lett. 150, 211-213] is due to dephosphorylation of the acetyl-CoA substrate and that the 3'-phosphate group is essential for activity.  相似文献   

15.
Cibacron Blue F3G-A, a probe used to monitor nucleotide binding domains in enzymes, inhibited sheep liver 5,10-methylenetetrahydrofolate reductase competitively with respect to 5-methyltetrahydrofolate and NADPH. TheK i values obtained by kinetic methods and theK d value for the binding of the dye to the enzyme estimated by protein fluorescence quenching were in the range 0.9–1.2 μM. Another triazine dye, Procion Red HE-3B interacted with the enzyme in an essentially similar manner to that observed with Cibacron Blue F3G-A. These results as well as the interaction of the dye with the enzyme monitored by difference spectroscopy and intrinsic protein fluorescence quenching methods indicated that the dye was probably interacting at the active site of the enzyme by binding at a hydrophobic region.  相似文献   

16.
Lactate oxidase (LOD) was purified from cells of Aerococcus viridans by phase partitioning in Triton X-114 (TX-114), ammonium sulphate fractionation and FPLC ion exchange chromatography. The purification achieved from a crude extract of A. viridans was 32-fold with a 60% recovery of activity. The isolated enzyme was a true FMN-containing LOD in tetrameric form with a subunit molecular weight of 48,000. The KM for L-lactate was 175 microM, a 6-fold less value than described in the literature. Among the inhibitors tested, Cibacron Blue 3GA showed the lowest Ki. At low concentrations, Cibacron Blue 3GA behaved as a dye-, pH- and time-dependent inhibitor. A Dixon plot of the steady-state rate showed the time-dependent inhibition to be non-linear, contrary to that described for other slow-binding inhibitors. A model to explain this phenomenon was proposed. The model implies the binding of Cibacron Blue 3GA to the isomerised form of the initial enzyme-inhibition complex (E'I).  相似文献   

17.
Bivalent metal ions, particularly Zn2+ and other members of the first-row transition series, promote irreversible inactivation of yeast hexokinase by Cibacron Blue F3G-A at a site competitive with both ATP and D-glucose. Difference spectroscopy indicates that the protein-dye dissociation constant is decreased from 250 micrometers in the absence of metal ions to less than 100 micrometers in the presence of appropriate concentrations of metal ions, with specificity displayed in the sequence of Zn2+ greater than Cu2+ greater than Ni2+ greater than Mn2+. Quantitative inactivation of yeast hexokinase leads to the incorporation of approx. 1 mol of Cibacron Blue F3G-A/mol of subunit of mol. wt. 51 000 in both the presence and the absence of metal ion. These results suggest the formation of a highly specific ternary complex involving enzyme, dye and metal ion at the active-site region of the enzyme, and correlate well with the known effects of metal ions in promoting the binding of hexokinase to immobilized Cibacron Blue F3G-A.  相似文献   

18.
Bovine serum albumin appears to improve the specificity of Cibacron Blue F3GA in affinity chromatography of enzymes which interact with nucleotides. The action of bovine serum albumin may rest in its ability to selectively mask affinity sites in the dye, which are not specific for the nucleotide-binding region of the enzyme, while not seriously impairing binding nor its elution by nucleotides. Thus, the elution of Chlorella nitrate reductase from a Blue Sepharose chromatographic column by its coenzyme, NADH, fails, unless the column is first treated with bovine serum albumin. Such treatment also improves the recovery of some other nucleotide-binding enzymes tested.  相似文献   

19.
The interaction of human and bovine serum albumin with Cibacron Blue and Blue Dextran in aqueous solution was studied by means of difference spectroscopy. Both human and bovine albumin interact strongly with underivatized Cibacron Blue in three independent binding sites (K = 105). On the contrary, Blue Dextran interacts strongly only with human albumin, but does not bind appreciably to bovine albumin. These results suggest that the binding sites are exposed and easily accessible in human albumin, while in bovine albumin they are sterically hindered and therefore not accessible to the bulky Blue Dextran.  相似文献   

20.
We have identified and characterized a novel ATP diphosphohydrolase (ATPDase) with features of E-type ATPases from porcine liver. Immunoblotting with a specific monoclonal antibody to this ectoenzyme revealed high expression in liver with lesser amounts in kidney and duodenum. This ATPDase was localized by immunohistochemistry to the bile canalicular domain of hepatocytes and to the luminal side of the renal ductular epithelium. In contrast, ATPDase/cd39 was detected in vascular endothelium and smooth muscle in these organs. We purified the putative ATPDase from liver by immunoaffinity techniques and obtained a heavily glycosylated protein with a molecular mass estimated at 75 kDa. This enzyme hydrolyzed all tri- and diphosphonucleosides but not AMP or diadenosine polyphosphates. There was an absolute requirement for divalent cations (Ca(2+) > Mg(2+)). Biochemical activity was unaffected by sodium azide or other inhibitors of ATPases. Kinetic parameters derived from purified preparations of hepatic ATPDase indicated V(max) of 8.5 units/mg of protein with apparent K(m) of 100 microM for both ATP or ADP as substrates. NH(2)-terminal amino acid sequencing revealed near 50% identity with rat liver lysosomal (Ca(2+)-Mg(2+))-ATPase. The different biochemical properties and localization of the hepatic ATPDase suggest pathophysiological functions that are distinct from the vascular ATPDase/cd39.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号