首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and characterization of photocleavable peptide-DNA conjugates is described along with their use as photocleavable mass marker (PCMM) hybridization probes for the detection of target DNA sequences by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Three photocleavable peptide-DNA conjugates were synthesized, purified, and characterized using HPLC and denaturing gel electrophoresis, as well as IR-MALDI and UV-MALDI. The hybridization properties of the conjugates were also studied by monitoring their thermal denaturation with absorption spectroscopy. No significant difference in the melting temperature ( T (m)) of the duplexes was observed between the unmodified duplex and the duplex in which one strand was modified with the photocleavable peptide moiety. These conjugates were evaluated as hybridization probes for the detection of immobilized synthetic target DNAs using MALDI-MS. In these experiments, the DNA portion of the conjugate acts as a hybridization probe, whereas the peptide is photoreleased during the ionization/desorption step of UV-MALDI and can serve as a marker (mass tag) to identify a unique target DNA sequence. The method should be applicable to a wide variety of assays requiring highly multiplexed DNA/RNA analysis, including gene expression monitoring, genetic profiling and the detection of pathogens.  相似文献   

2.
A biotinylated photocleavable polyethylenimine (B-PC-PEI) was designed and synthesized for the capture and controlled release of nucleic acids from solid supports. B-PC-PEI was synthesized via a three-step reaction process and verified by 1H NMR and mass spectrometry. In aqueous solution, the o-nitrobenzyl group within B-PC-PEI was efficiently cleaved by 5 min of 365 nm light exposure from a distance of 20 cm (9 mW/cm2). When coupled to streptavidin-coated beads, the PEI domain of Cy5-labeled B-PC-PEI was released by 365 nm light exposure. In contrast, a Cy5-labeled biotinylated PEI (B-PEI) was used as a control and negligible fluorescence loss was observed. Cy5-labeled siRNA was electrostatically captured to streptavidin-coated beads preabsorbed with B-PC-PEI or B-PEI, and flow cytometry demonstrated significant loss of fluorescence from the bead surface after 5 min of light exposure only for B-PC-PEI, demonstrating controlled release of siRNA from the bead surface. Finally, the release of the Cy5-labeled siRNA into the supernatant was quantified. The release of Cy5-siRNA into the supernatant was significantly greater after 5 min of light exposure for B-PC-PEI/streptavidin beads compared to 0 min exposure and remained unchanged for B-PEI/streptavidin beads. B-PC-PEI facilitates capture and triggered release of surface-tethered nucleic acids with light exposure and is fully compatible with streptavidin-based applications.  相似文献   

3.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry was used to analyze short DNA duplex probes with one strand immobilized on solid supports (straptavidin-coated magnetic beads or controlled pore glass beads). Only the non-immobilized strand could be detected. Partial denaturation was found when the duplex probes were mixed with 3-hydroxypicolinic acid, ammonium citrate matrix. The strategy has several applications, such as fast DNA sequence analysis and DNA diagnostics.  相似文献   

4.
A simple and rapid strategy is described to screen protein fractions for defined enzymatic activity. A protein fraction from a porcine kidney extract was immobilized by covalent coupling to activated affinity beads. The immobilized proteins were incubated with probes specific for different enzyme activities. The reaction products were analyzed by matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry. The MALDI spectra indicate the presence of 5'-nucleotidase, phosphatase, kinase, glutathione reductase, and renin activities in the kidney protein extract. Furthermore, the method can be used to screen for inhibitors of enzymatic reactions. The method is adaptable to high-throughput sample handling and automated mass spectrometric analysis and therefore suited for functional genomics.  相似文献   

5.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

6.
The possible emergence of a pandemic influenza virus from the avian influenza virus (AIV) has become a serious threat. The isolation of viruses will be crucial for further virological analysis and the development of vaccines. However, currently, there is no simple method for facilitating the isolation of infectious AIV. Here, we have developed a simple method of capturing AIV using anionic magnetic beads. The method employed the capture of AIV (H5N1, H5N2, and H5N3) from liquid samples such as allantoic fluid (AF) and cell culture medium (CM) using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride). After their incubation with AIV-containing samples, the magnetic beads were separated from the supernatant by applying a magnetic field. The absorption of AIV on the beads was confirmed by immunochromatography and an enzyme-linked immunosorbent assay, which indicated the presence of hemagglutinin, neuraminidase, and nucleoprotein of AIV. Furthermore, the infectivity in chicken eggs of AIV captured by magnetic beads was similar to that of the starting materials. The capture of AIV using magnetic beads coated with anionic polymers will contribute to the sufficient recovery of infectious AIV and approach for potential pandemic influenza viruses.  相似文献   

7.
A simple and rapid strategy is described to screen protein fractions for defined enzymatic activity. A protein fraction from a porcine kidney extract was immobilized by covalent coupling to activated affinity beads. The immobilized proteins were incubated with probes specific for different enzyme activities. The reaction products were analyzed by matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry. The MALDI spectra indicate the presence of 5′-nucleotidase, phosphatase, kinase, glutathione reductase, and renin activities in the kidney protein extract. Furthermore, the method can be used to screen for inhibitors of enzymatic reactions. The method is adaptable to high-throughput sample handling and automated mass spectrometric analysis and therefore suited for functional genomics.  相似文献   

8.
High-throughput procedures are an important requirement for future large-scale genetic studies such as genotyping of single nucleotide polymorphisms (SNPs). Matrix-assisted laser desorption/ ionisation mass spectrometry (MALDI-MS) has revolutionised the analysis of biomolecules and, in particular, provides a very attractive solution for the rapid typing of DNA. The analysis of DNA by MALDI can be significantly facilitated by a procedure termed ‘charge-tagging’. We show here a novel approach for the generation of charge-tagged DNA using a photocleavable linker and its implementation in a molecular biological procedure for SNP genotyping consisting of PCR, primer extension, photocleavage and a chemical reaction prior to MALDI target preparation and analysis. The reaction sequence is amenable to liquid handling automation and requires no stringent purification procedures. We demonstrate this new method on SNPs in two genes involved in complex traits.  相似文献   

9.
An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether–maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The absorption of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin–Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.  相似文献   

10.
SIR2 is a key regulator of the aging process in many model organisms. The human ortholog SIRT1 plays a pivotal role in the regulation of cellular differentiation, metabolism, cell cycle, and apoptosis. SIRT1 is an NAD(+)-dependent deacetylase, and its enzymatic activity may be regulated by cellular energy. There is a growing number of known SIRT1 substrates that contain epsilon-acetyl lysine but for which no obvious consensus sequence has been defined. In this study, we developed a novel unbiased method to identify deacetylase sequence specificity using oriented peptide libraries containing acetylated lysine. Following incubation with SIRT1, the subset of deacetylated peptides was selectively captured using a photocleavable N-hydroxysuccinimide (NHS)-biotin linker and streptavidin beads and analyzed using mass spectrometry and Edman degradation. These studies revealed that substrate recognition by SIRT1 does not depend on the amino acid sequence proximate to the acetylated lysine. This result brings us one step closer to understanding how SIRT1 and possibly other protein deacetylases chose their substrate.  相似文献   

11.
A uridine-based linker immobilized onto polystyrene beads at the 5' terminus via a phosphodiester group and then used as a universal DNA synthesis support gives post synthesis DNA cleavage in 8 hrs or less without alkali metal salts. DNA produced with the new support was analyzed by HPLC, MALDI mass spectroscopy and PAGE. Each analysis showed DNA of equivalent quality to that produced with standard CPG supports, without contaminating materials resulting from linker or support backbone decomposition.  相似文献   

12.
Exposure to cow's milk constitutes one of the most common causes of food allergy. In addition, exposure to soy proteins has become relevant in a restricted proportion of milk allergic pediatric patients treated with soy formulae as a dairy substitute, because of the cross‐allergenicity described between soy and milk proteins. We have previously identified several cross‐reactive allergens between milk and soy that may explain this intolerance. The purpose of the present work was to identify epitopes in the purified αS1‐casein and the recombinant soy allergen Gly m 5.0101 (Gly m 5) using an α‐casein‐specific monoclonal antibody (1D5 mAb) through two different approaches for epitope mapping, to understand cross‐reactivity between milk and soy. The 1D5 mAb was immobilized onto magnetic beads, incubated with the peptide mixture previously obtained by enzymatic digestion of the allergens, and the captured peptides were identified by MALDI‐TOF MS analysis. On a second approach, the peptide mixture was resolved by RP‐HPLC and immunodominant peptides were identified by dot blot with the mAb. Finally, recognized peptides were sequenced by MALDI‐TOF MS. This novel MS based approach led us to identify and characterize four peptides on α‐casein and three peptides on Gly m 5 with a common core motif. Information obtained from these cross‐reactive epitopes allows us to gain valuable insight into the molecular mechanisms of cross‐reactivity, to further develop new and more effective vaccines for food allergy.  相似文献   

13.
14.
《Process Biochemistry》2010,45(9):1582-1586
In order to easily separate pollutant-absorbing polymer beads from contaminated soil or water, novel polymer beads containing magnetic particles were developed. The polymer beads containing 4.67% (w/w) magnetic particles exhibited an almost identical partitioning coefficient for phenol compared to that of the pure polymer. A 1.5 L phenol solution of 2000 mg/L added to a bioreactor was reduced to 481 mg/L phenol within 3 h by adding 100 g of these magnetic beads, and the phenol was completely degraded by microorganisms in 16 h. The magnetized beads were then readily removed from the bioreactor by a magnet with 10,000 G, and subsequently detached for re-use. 500 g of soil contaminated with 4 mg-phenol/g-soil was also contacted with 100 g beads, and greater than 97% removal of phenol from the soil was achieved within 1 day. The phenol-absorbing beads were easily separated from the soil by the magnet and transferred into a fermentor. The phenol was released from the beads and was degraded by the microorganism in 10 h. Modifying polymers to possess magnetic properties has greatly improved the ease of handling of these sequestering materials when decontaminating soil and water sources, in conjunction with contaminant release in partitioning bioreactors.  相似文献   

15.
Abstract

A uridine-based linker immobilized onto polystyrene beads at the 5′ terminus via a phosphodiester group and then used as a universal DNA synthesis support gives post synthesis DNA cleavage in 8 hrs or less without alkali metal salts. DNA produced with the new support was analyzed by HPLC, MALDI mass spectroscopy and PAGE. Each analysis showed DNA of equivalent quality to that produced with standard CPG supports, without contaminating materials resulting from linker or support backbone decomposition.  相似文献   

16.
Lactococcus lactis ssp. cremoris was entrapped within a Ca-alginate matrix, and an in situ spectrophotometric method for monitoring cell population in calcium alginate beads described. The intracapsular cell population can be estimated by measuring the optical density of beads containing cells, using cell-free beads as reference, or by measuring absorbance of a liquified bead suspension. Alginate beads, and beads coated with chitosan type I, II, and I and II mixtures, were examined for cell release. Lower viscosity chitosan (type I) coatings reduced cell release by a factor of 100 from105 cfu ml−1 to 103 cfu ml−1 after 6 h of fermentation. Reuse of chitosan I coated alginate beads also showed a reduction in cell release by a factor of 100. Cell loading and initial cell growth within the beads greatly affected cell release. Reducing the initial cell release would lower the overall levels of cell release throughout the fermentation. Compared to non-immobilized cultures, a 20–40% reduction in the lactic acid production rate was observed for alginate beads and chitosan I coated alginate beads, respectively. This reduction can be compensated for by increasing the intracapsular cell loading during immobilization, or before the onset of fermentation.  相似文献   

17.
Proteolytic digestion of proteins bound to immobilized antibodies, combined with matrix assisted laser desorption (MALDI) mass spectrometric identification of the affinity-bound peptides, can be a powerful technique for epitope determination. Binding of the protein to the antibody is done while the protein is in its native, folded state. A purified protein is not required for this procedure, because only proteins containing the antigenic determinant will bind to the antibody in the initial step. The method makes use of the resistance of the antibody to enzymatic digestion. Enzymatic cleavage products of the antigenic protein not containing the epitope are washed off the beads, leaving the epitope-containing fragments affinity bound to the immobilized antibody. Dissociation of the antigen-antibody complex prior to mass spectrometric analysis is unnecessary because the affinity-bound peptides are released by the MALDI matrix crystallization process, although the antibody remains covalently attached to the sepharose beads. This epitope-mapping protocol has been used in the determination of both continuous and discontinuous epitopes on both glycosylated and unglycosylated proteins.  相似文献   

18.
This work investigates the development, optimization and in vitro evaluation of liquid paraffin-entrapped multiple-unit alginate-based floating system containing cloxacillin by emulsion-gelation method for gastro retentive delivery. The effect of process variables like drug to polymer ratio by weight, and liquid paraffin to water ratio by volume on various physicochemical properties in case of liquid paraffin-entrapped calcium alginate beads containing cloxacillin applicable to drug entrapment efficiency, density and drug release was optimized using 32 factorial design and analyzed using response surface methodology. The observed (actual values) responses were coincided well with the predicted values, given by the optimization technique. The optimized beads showed drug entrapment efficiency of 64.63 ± 0.78%, density of 0.90 ± 0.05 g/cm3, and drug release of 56.72 ± 0.85% in simulated gastric fluid (pH 1.2) after 8 h with floating lag time of 8.45 min and floated well over 12 h in simulated gastric fluid (pH 1.2). The average size of all dried beads ranged from 1.73 ± 0.04 to 1.97 ± 0.08 mm. The beads were characterized by SEM and FTIR for surface morphology and excipients-drug interaction analysis, respectively. All these beads showed prolonged sustained release of cloxacillin over 8 h in simulated gastric fluid (pH 1.2). The cloxacillin release profile from liquid paraffin beads followed Korsmeyer-Peppas model over a period of 8 h with anomalous (non-Fickian) diffusion mechanism for drug release.  相似文献   

19.
Purification of specific DNA-protein complexes is a challenging task, as the involved interactions can be both electrostatic/H-bond and hydrophobic. The chromatographic stringency needed to obtain reasonable purifications uses salts and detergents. However, these components elicit the removal of proteins unspecifically bound to the chromatographic support itself, thus contaminating the purification products. In this work, a photocleavable linker connected the target oligonucleotidic sequence to the chromatographic beads so as to allow the irradiation-based release of the purified DNA-protein complexes off the beads. Our bioanalytical conditions were validated by purifying the tetracycline repressor protein onto a specific oligonucleotide. The purification factor was unprecedented, with a single contaminant. The robustness of our method was challenged by applying it to the purification of multiprotein assemblies forming onto DNA damage-mimicking oligonucleotides. The purified components were identified as well-known DNA repair proteins, and were shown to retain their enzymatic activities, as seen by monitoring DNA ligation products. Remarkably, kinase activities, also monitored, were found to be distinct on the beads and on the purified DNA-protein complexes, showing the benefits to uncouple the DNA-protein assemblies from the beads for a proper understanding of biochemical regulatory mechanisms involved in the DNA-protein assemblies.  相似文献   

20.
The magnetic poly(2-hydroxyethyl methacrylate ethylene glycol dimethacrylate) [m-poly(HEMA-EGDMA)] beads (150-250-microm diameter in spherical form) were prepared by a radical suspension polymerization technique. The pseudo-specific ligand, reactive imidazole containing 3-(2-imidazoline-1-yl)propyl (triethoxysilane) (IMEO) was selected as a silanization agent. IMEO was covalently immobilized onto the magnetic beads. IMEO-immobilized m-poly(HEMA-EGDMA) beads were used for the affinity adsorption of immunoglobulin-G (IgG) from aqueous solutions and human plasma. To evaluate the degree of IMEO attachment, the m-poly(HEMA-EGDMA) beads were subjected to Si analysis by using flame atomizer atomic absorption spectrometer, and it was estimated as 36.6 mg IMEO/g of polymer. The nonspecific IgG adsorption onto the plain m-poly(HEMA-EGDMA) beads was very low (about 0.4 mg/g). Higher adsorption values (up to 55 mg/g) were obtained when the m-poly(HEMA-EGDMA)/IMEO beads were used from both aqueous solutions and human plasma. The maximum IgG adsorption on the m-poly(HEMA-EGDMA)-IMEO beads was observed at pH 7.0. The IgG molecules could be repeatedly adsorbed and desorbed with m-poly(HEMA-EGDMA)-IMEO beads without noticeable loss in the IgG adsorption capacity. The adsorption capacity from human plasma in magnetically stabilized fluidized bed decreased drastically from 78.9 to 19.6 mg/g with the increase of the flow rate from 0.2 to 3.5 mL/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号