首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to detect and monitor bladder cancer in noninvasively obtained urine samples is a major goal. While a number of protein biomarkers have been identified and commercially developed, none have greatly improved the accuracy of sample evaluation over invasive cystoscopy. The ongoing development of high-throughput proteomic profiling technologies will facilitate the identification of molecular signatures that are associated with bladder disease. The appropriate use of these approaches has the potential to provide efficient biomarkers for the early detection and monitoring of recurrent bladder cancer. Identification of disease-associated proteins will also advance our knowledge of tumor biology, which, in turn, will enable development of targeted therapeutics aimed at reducing morbidity from bladder cancer. In this article, we focus on the accumulating proteomic signatures of urine in health and disease, and discuss expected future developments in this field of research.  相似文献   

2.
Proteomic profiling of pancreatic cancer for biomarker discovery   总被引:15,自引:0,他引:15  
Pancreatic cancer is a uniformly lethal disease that is difficult to diagnose at early stage and even more difficult to cure. In recent years, there has been a substantial interest in applying proteomics technologies to identify protein biomarkers for early detection of cancer. Quantitative proteomic profiling of body fluids, tissues, or other biological samples to identify differentially expressed proteins represents a very promising approach for improving the outcome of this disease. Proteins associated with pancreatic cancer identified through proteomic profiling technologies could be useful as biomarkers for the early diagnosis, therapeutic targets, and disease response markers. In this article, we discuss recent progress and challenges for applying quantitative proteomics technologies for biomarker discovery in pancreatic cancer.  相似文献   

3.
Proteomic profiling has emerged as a useful tool for identifying tissue alterations in disease states including malignant transformation. The aim of this study was to reveal expression profiles associated with the highly motile/invasive ovarian cancer cell phenotype. Six ovarian cancer cell lines were subjected to proteomic characterization using multidimensional protein identification technology (MudPIT), and evaluated for their motile/invasive behavior, so that these parameters could be compared. Within whole cell extracts of the ovarian cancer cells, MudPIT identified proteins that mapped to 2245 unique genes. Western blot analysis for selected proteins confirmed the expression profiles revealed by MudPIT, demonstrating the fidelity of this high-throughput analysis. Unsupervised cluster analysis partitioned the cell lines in a manner that reflected their motile/invasive capacity. A comparison of protein expression profiles between cell lines of high (group 1) versus low (group 2) motile/invasive capacity revealed 300 proteins that were differentially expressed, of which 196 proteins were significantly upregulated in group 1. Protein network and KEGG pathway analysis indicated a functional interplay between proteins up-regulated in group 1 cells, with increased expression of several key members of the actin cytoskeleton, extracellular matrix (ECM) and focal adhesion pathways. These proteomic expression profiles can be utilized to distinguish highly motile, aggressive ovarian cancer cells from lesser invasive ones, and could prove to be essential in the development of more effective strategies that target pivotal cell signaling pathways used by cancer cells during local invasion and distant metastasis.  相似文献   

4.
The search for novel molecular markers of tumor invasion is vital if strategies are to become more effective in the diagnostic and prognostic management of transitional cell carcinoma of the bladder. Up to 50% of tumors detected at stage 1 (pT1) progress to a higher grade even after endoscopic surgical resection, and there are currently no protein markers of this aggressive, invasive phenotype. We have combined SELDI-TOF-MS, ClinProt magnetic bead enrichment, Nano-LC-ESI-ion trap tandem mass spectrometry and immunohistochemical analysis to the study of 12 invasive bladder cancer tissue biopsies paired with normal bladder tissue samples obtained from the same patients for the definition and identification of proteins up-regulated in the tumors. We report the inflammation-associated calcium binding protein S100A8 (MRP-8, calgranulin A) to be highly expressed in tumor cells in contrast to normal urothelium in 50% of the samples, as well as two unidentified protein markers at 5.75 and 6.89 kDa that were differentially detected in 9/12 and 10/12 tumor samples, respectively. These new markers, when fully characterized, may contribute to new target proteins for the prediction of aggressive, invasive bladder tumors.  相似文献   

5.
To identify aggressiveness-associated molecular mechanisms and biomarker candidates in bladder cancer, we performed a SILAC (Stable Isotope Labelling by Amino acids in Cell culture) proteomic analysis comparing an invasive T24 and an aggressive metastatic derived T24T bladder cancer cell line. A total of 289 proteins were identified differentially expressed between these cells with high confidence. Complementary and validation analyses included comparison of protein SILAC data with mRNA expression ratios obtained from oligonucleotide microarrays, and immunoblotting. Cul3, an overexpressed protein in T24T, involved in the ubiquitination and subsequent proteasomal degradation of target proteins, was selected for further investigation. Functional analyses revealed that Cul3 silencing diminished proliferative, migration and invasive rates of T24T cells, and restored the expression of cytoskeleton proteins identified to be underexpressed in T24T cells by SILAC, such as ezrin, moesin, filamin or caveolin. Cul3 immunohistochemical protein patterns performed on bladder tumours spotted onto tissue microarrays (n = 284), were associated with tumor staging, lymph node metastasis and disease-specific survival. Thus, the SILAC approach identified that Cul3 modulated the aggressive phenotype of T24T cells by modifying the expression of cytoskeleton proteins involved in bladder cancer aggressiveness; and played a biomarker role for bladder cancer progression, nodal metastasis and clinical outcome assessment.  相似文献   

6.
Aiming at identifying biomarkers for bladder cancer, the urinary proteome was explored through a two-dimensional gel-based proteomic approach (2D-DIGE) coupled with mass spectrometry and database interrogation. The increased expression of proteins differentially expressed between patients with bladder tumors and controls such as Reg-1 and keratin 10 was confirmed to be associated with bladder cancer progression on bladder cancer cell lines by immunoblotting, and bladder tumors by immunohistochemistry. Moreover, the association of these proteins, especially Reg-1, with tumor staging and clinical outcome was confirmed by immunohistochemistry using an independent series of bladder tumors contained in tissue microarrays (n=292). Furthermore, Reg-1 was quantified using an independent series of urinary specimens (n=80) and provided diagnostic utility to discriminate patients with bladder cancer and controls (area under the curve (AUC=0.88)). Thus, the 2D-DIGE approach has identified Reg-1 as a biomarker for bladder cancer diagnostics, staging, and outcome prognosis.  相似文献   

7.
We used protein expression profiles to develop a classification rule for the detection and prognostic assessment of bladder cancer in voided urine samples. Using the Ciphergen PBS II ProteinChip Reader, we analyzed the protein profiles of 18 pairs of samples of bladder tumor and adjacent urothelium tissue, a training set of 85 voided urine samples (32 controls and 53 bladder cancer), and a blinded testing set of 68 voided urine samples (33 controls and 35 bladder cancer). Using t-tests, we identified 473 peaks showing significant differential expression across different categories of paired bladder tumor and adjacent urothelial samples compared to normal urothelium. Then the intensities of those 473 peaks were examined in a training set of voided urine samples. Using this approach, we identified 41 protein peaks that were differentially expressed in both sets of samples. The expression pattern of the 41 protein peaks was used to classify the voided urine samples as malignant or benign. This approach yielded a sensitivity and specificity of 59% and 90%, respectively, on the training set and 80% and 100%, respectively, on the testing set. The proteomic classification rule performed with similar accuracy in low- and high-grade bladder carcinomas. In addition, we used hierarchical clustering with all 473 protein peaks on 65 benign voided urine samples, 88 samples from patients with clinically evident bladder cancer, and 127 samples from patients with a history of bladder cancer to classify the samples into Cluster A or B. The tumors in Cluster B were characterized by clinically aggressive behavior with significantly shorter metastasis-free and disease-specific survival.  相似文献   

8.
Lumbar spinal stenosis (LSS) is a syndromic degenerative spinal disease and is characterized by spinal canal narrowing with subsequent neural compression causing gait disturbances. Although LSS is a major age‐related musculoskeletal disease that causes large decreases in the daily living activities of the elderly, its molecular pathology has not been investigated using proteomics. Thus, we used several proteomic technologies to analyze the ligamentum flavum (LF) of individuals with LSS. Using comprehensive proteomics with strong cation exchange fractionation, we detected 1288 proteins in these LF samples. A GO analysis of the comprehensive proteome revealed that more than 30% of the identified proteins were extracellular. Next, we used 2D image converted analysis of LC/MS to compare LF obtained from individuals with LSS to that obtained from individuals with disc herniation (nondegenerative control). We detected 64 781 MS peaks and identified 1675 differentially expressed peptides derived from 286 proteins. We verified four differentially expressed proteins (fibronectin, serine protease HTRA1, tenascin, and asporin) by quantitative proteomics using SRM/MRM. The present proteomic study is the first to identify proteins from degenerated and hypertrophied LF in LSS, which will help in studying LSS.  相似文献   

9.
Neoadjuvant chemotherapy is used to treat oestrogen receptor-positive breast cancer however chemo-resistance is a major obstacle in this molecular subtype. The ability to predict tumour response would allow chemotherapy administration to be directed towards patients who would most benefit, thus maximising treatment efficacy. We aimed to identify protein biomarkers associated with response to neoadjuvant chemotherapy, in a pilot study using comparative 2-DE MALDI TOF/TOF MS proteomic analysis of breast tumour samples. A total of 3 comparative proteomic experiments were performed, comparing protein expression between chemotherapy-sensitive and chemotherapy-resistant oestrogen receptor-positive invasive ductal carcinoma tissue samples. This identified a list of 132 unique proteins that were significantly differentially expressed (≥ 2 fold) in chemotherapy resistant samples, 57 of which were identified in at least two experiments. Ingenuity? Pathway Analysis was used to map the 57 DEPs onto canonical signalling pathways. We implicate several isoforms of 14-3-3 family proteins (theta/tau, gamma, epsilon, beta/alpha and zeta/delta), which have previously been associated with chemotherapy resistance in breast cancer. Extensive clinical validation is now required to fully assess the role of these proteins as putative markers of chemotherapy response in luminal breast cancer subtypes.  相似文献   

10.
目的:建立雌/孕激素受体(ER/PR)阴性和阳性乳腺癌的蛋白质表达谱,寻找ER/PR阴性和阳性乳腺癌中差异表达蛋白,为乳腺癌患者提供新的预后预测指标和治疗新靶点。方法:应用蛋白质组学i TRAQ技术建立ER/PR阳性和阴性乳腺癌的蛋白质差异表达谱,鉴定两组乳腺癌的差异表达蛋白,对部分差异表达蛋白进行生物信息学分析,包括蛋白功能注释和分类GO分析和KEGG通路分析。结果:应用i TRAQ蛋白质组学技术对乳腺癌组织进行了蛋白组学分析,鉴定出ER/PR阳性和阴性组间有差异表达的蛋白4999种,以ER/PR阳性:ER/PR阴性≥3为上调标准,确定ER/PR阳性组上调蛋白101种。以ER/PR阳性:ER/PR阴性≤0.5为下调标准,ER/PR阳性组下调蛋白122种。GO分析结果显示ER/PR受体阴性和阳性乳腺癌的差异表达蛋白的分子功能、生物过程、细胞定位较为复杂,并且在上调蛋白和下调蛋白上存在分布差异。KEGG通路分析发现部分差异表达蛋白涉及201条信号通路。结论:ER/PR阳性和阴性乳腺癌间存在差异表达蛋白,这些蛋白涉及复杂的分子功能、生物过程和信号通路。  相似文献   

11.
Clear cell adenocarcinoma (CCA) has a highly malignant potential in human epithelial ovarian cancer. The serum CA-125 is widely used as a marker for ovarian cancer, but the level is relatively low in CCA. Therefore, new sensitive biomarkers are required. In this report, we describe a promising proteomic analysis that is differentially expressed in CCA when compared to mucinous adenocarcinoma, using the ovarian cultured cell lines OVISE, OVTOKO, and MCAS. The disease-associated proteins were identified by 2-D differential gel electrophoresis (2-D DIGE) and MS. In this analysis, 18 up-regulated and 31 down-regulated spots were observed that had at least two-fold differences in the two CCA cell lines than in MCAS as control cells. Some of the proteins differentially expressed in CCA were previously observed as alternative expression levels in ovarian and/or other cancers in clinical samples. In a subsequent preliminary differential study using surgical specimens from patients with CCA, it was demonstrated that the identified proteins were expressed differentially in actual tissues, as well as in the CCA culture cells. The results from this investigation show the potentiality of a proteomic approach for identifying disease-associated proteins, which may eventually serve as diagnostic markers or therapeutic targets in CCA.  相似文献   

12.
The S100 gene family, which is composed of at least 24 members carrying the Ca2+ binding EF-hand motif, has been implicated in both intracellular and extracellular functions, including enzyme activities, immune responses, cytoskeleton dynamics, Ca2+ homeostasis, cell growth and cell differentiation. Altered S100 protein levels are associated with a broad range of diseases, including cardiomyopathy, inflammatory and immune disorders, neurodegenerative disorders and cancer. Although the precise role of S100 protein in carcinogenesis is poorly understood, it seems that formation of homo- and hetero-dimers, binding of Ca2+ and interaction with effector molecules are essential for the development and progression of many cancers. Several studies have suggested that S100 proteins promote cancer progression and metastasis through cell survival and apoptosis pathways. In animal models of bladder cancer, several S100 proteins are differentially expressed in bladder tumors relative to normal urothelium. In human bladder cancer, overexpression of S100A4, S100A8 or S100A11 are associated with stage progression, invasion, metastasis and poor survival. This review summarizes these findings and evaluates their implications for human bladder cancer management.  相似文献   

13.
Age-related macular degeneration (AMD) can lead to irreversible central vision loss in the elderly. Although large number of growth factor pathways, including the vascular endothelial growth factor (VEGF), has been implicated in the pathogenesis of AMD, no study has directly assessed the whole proteomic composition in the aqueous humor (AH) among AMD patients. The AH contains proteins secreted from the anterior segment tissue, and these proteins may play an important role in the pathogenesis of AMD. Thus, comparisons between the AH proteomic profiles of AMD patients and non-AMD controls may lead to the verification of novel pathogenic proteins useful as potential clinical biomarkers. In this study, we used discovery-based proteomics and Multiple Reaction Monitoring Mass Spectrometry (MRM-MS) to analyze AH from AMD patients and AH from controls who underwent cataract surgery. A total of 154 proteins with at least two unique peptides were identified in the AH. Of these 154 proteins identified by discovery-based proteomics, 10 AH proteins were novel identifications. The protein composition in the AH was different between AMD patients and non-AMD controls. Subsequently, a systematic MRM-MS assay was performed in seven highly abundant differentially expressed proteins from these groups. Differential expression of three proteins was observed in the AH of AMD patients compared with that of cataract controls (p < 0.0312). Elucidation of the aqueous proteome will establish a foundation for protein function analysis and identify differentially expressed markers associated with AMD. This study demonstrates that integrated proteomic technologies can yield novel biomarkers to detect exudative AMD.  相似文献   

14.
15.
Despite many years of research efforts and continued progress in the identification of urine markers for detection of bladder cancer, none of the markers described to date has been able to replace cystoscopy and urine cytology, the current gold standards for diagnosis. Here, we present a comprehensive gel-based proteomic study in which we have analyzed the presence and origin of fibrinogen (FG) and its degradation products (FDPs) in the urine of patients with and without urothelial carcinoma (UCs), with the aim of evaluating the potential of two-dimensional (2D) gel FDP profiling for detecting bladder cancer. A total of 151 urine samples collected from patients with Ucs of varying degrees of atypia and stages of invasion were compared with a control group consisting of 34 healthy volunteers with no clinical history of bladder cancer. The level and degree of degradation of FG in the urine were determined by 2D gel Western blotting in combination with enhanced chemilumenscence detection. Elevated levels of urine FG/FDPs were found in 99% of patients bearing superficial tumors, in 97% of the cases with early invasive disease, and in 96% of patients with highly invasive tumors. 2D gel profiling of urine FG/FDPs showed that the FG chains exhibited differential susceptibility to in situ proteolysis, with the α-chain being the most susceptible and the γ-chain the most resistant. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified peptide sequence regions in several of the most representative and common FDPs, which can be of value for producing novel specific antibodies to detect FG/FDPs in the urine. In addition, we present evidence indicating that FG is not produced by normal or malignant urothelium, although it is present both in the stroma of malignant tissue and tumor lesions. Taken together, the data indicate that increased levels of FG/FDPs amounts in the urine are a characteristic feature of bladder cancer, and emphasize the value of 2D gel profiling of urine FG/FDPs for detecting low-grade, noninvasive UCs.  相似文献   

16.
There has been an impressive emergence of mass spectrometry based technologies applied toward the study of proteins. Equally notable is the rapid adaptation of these technologies to biomedical approaches in the realm of clinical proteomics. Concerted efforts toward the elucidation of the proteomes of organ sites or specific disease state are proliferating and from these efforts come the promise of better diagnostics/prognostics and therapeutic intervention. Prostate cancer has been a focus of many such studies with the promise of improved care to patients via biomarkers derived from these proteomic approaches. The newer technologies provide higher analytical capabilities, employ automated liquid handling systems, fractionation techniques and bioinformatics tools for greater sensitivity and resolving power, more robust and higher throughput sample processing, and greater confidence in analytical results. In this prospects, we summarize the proteomic technologies applied to date in prostate cancer, along with their respective advantages and disadvantages. The development of newer proteomic strategies for use in future applications is also discussed.  相似文献   

17.
The aim of the present study was the molecular profiling of different Ph+ chronic myelogenous leukemia (CML) cell lines (LAMA84, K562, and KCL22) by a proteomic approach. By employing two-dimensional gel electrophoresis combined with mass spectrometry analysis, we have identified 191 protein spots corresponding to 142 different proteins. Among these, 63% were cancer-related proteins and 74% were described for the first time in leukemia cells. Multivariate analysis highlighted significant differences in the global proteomic profile of the three CML cell lines. In particular, the detailed analysis of 35 differentially expressed proteins revealed that LAMA84 cells preferentially expressed proteins associated with an invasive behavior, while K562 and KCL22 cells preferentially expressed proteins involved in drug resistance. These data demonstrate that these CML cell lines, although representing the same pathological phenotype, show characteristics in their protein expression profile that suggest different phenotypic leukemia subclasses. These data contribute a new potential characterization of the CML phenotype and may help to understand interpatient variability in the progression of disease and in the efficacy of a treatment.  相似文献   

18.
19.
为分析支气管上皮癌变进程中的差异表达蛋白质,筛选肺鳞癌早期诊断标志物,以人支气管上皮癌变各阶段组织为研究对象,先采用激光捕获显微切割技术(LCM) 纯化人正常支气管上皮组织、鳞状化生、不典型增生、原位癌、浸润性肺鳞癌组织,再用同位素标记相对和绝对定量 (iTRAQ) 技术结合二维液相色谱串联质谱(2D LC-MS/MS)鉴定支气管上皮癌变进程中各阶段的差异表达蛋白质。结果共鉴定了1036个蛋白质,筛选出102个与人支气管上皮癌变相关的差异蛋白质,在这些差异蛋白质中,有的在支气管上皮癌变过程中进行性上调,有的在支气管上皮癌变过程中进行性下调,有的呈阶段特异性改变;功能分析表明,这些差异蛋白质涉及代谢、细胞凋亡、增殖、分化、信号传导、转录、翻译、细胞粘附、免疫反应与发育等。Western blotting 及免疫组织化学技术验证了其中 2个差异蛋白(S100A9和 CKB) 的表达,证实了定量蛋白质组学结果的可靠性。研究结果提示:这些差异表达蛋白质与支气管上皮癌变相关,并可成为肺鳞癌的早期诊断标志物,进一步研究差异蛋白的生物学功能,将有助于阐明支气管上皮的癌变机制,从而为肺鳞癌的早期诊断与发病机制研究提供新思路。  相似文献   

20.
Han Y  Chen J  Zhao X  Liang C  Wang Y  Sun L  Jiang Z  Zhang Z  Yang R  Chen J  Li Z  Tang A  Li X  Ye J  Guan Z  Gui Y  Cai Z 《PloS one》2011,6(3):e18286

Background

MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing.

Methodology/Principal Findings

We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b∼429, hsa-miR-200c∼141 and hsa-miR-17∼92 clusters were significantly upregulated. The hsa-miR-143∼145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p<0.001 for each miRNA).

Conclusions/Significance

To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号