首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-molecular-weight fluorochromes were intracellularly injected into a sieve element of the fascicular stem phloem ofVicia faba L., using a modified membrane-potential-recording pressure probe. After stabilization of the membrane potential following microelectrode impalement, either LYCH (Lucifer Yellow CH), 4.4-kDa FITC-dextran (fluoresceinisothiocyanate-dextran) conjugate, or 3-kDa, 10-kDa or 40-kDa LYCH-dextran conjugate was microinjected into the sieve element. Longitudinal fluorochrome movement across the sieve plates and lateral displacement to the companion cells was detected with all the probes except the 40-kDa conjugate. This indicates that the molecular exclusion limit of the pore/plasmodesma units between a sieve element and a companion cell in the fascicular stem phloem ofVicia faba lies between 10 kDa and 40 kDa.Abbreviations FITC fluoresceinisothiocyanate - LYCH Lucifer Yellow CH - MEL molecular exclusion limit - PPU pore/plasmodesma unit - SE/CC-complex sieve element/companion cell complex  相似文献   

2.
Endoplasmic reticulum in the root protophloem of Nymphoides peltata (S.G. Gmel.) O. Kuntze changes form as sieve elements differentiate. In immature sieve elements the individual endoplasmic reticulum (ER) cisternae form large irregular aggregates in the cytoplasm. In older immature sieve elements the ER aggregates are more ordered and membranes in them are convoluted. Although convoluted ER predominates in immature sieve elements the ER of the mature sieve elements consists mainly of flattened stacks of ER cisternae. Some of these stacks of ER may be derived from the existing convoluted ER. Crystalline fibrils first appear in the cytoplasm of the sieve element when the ER starts to aggregate. The crystalline fibrils move to the parietal layer of the sieve element along with the aggregates of ER. A possible ontogenetic relationship between ER and crystalline fibrils is discussed.Abbreviation ER endoplasmic reticulum  相似文献   

3.
Differentiation of external phloem is earlier than that of internal phloem in the young petiole of Luffa cylindrical. For a single sieve-tube element, one to six companion cells are present. The young sieve element shows many globular slime bodies which fuse longitudinally and disperse into the cytoplasm. Simultaneously the nucleus loses its stainable contents and later disorganizes. The contents of the sieve element are in the form of plugs, strands or a granular mass. Undispersed slime in the form of discrete bodies along the lateral walls is also observed. During one stage, at least, the dispersed slime and other contents of a mature sieve element lie at the periphery around a central cavity. A special type of phloem-parenchyma cell shows disorganizing chloroplasts, an extruded nucleolus, and callose on primary pit fields.  相似文献   

4.
The differentiation of sieve elements from inner cortical cells of the stipe of Laminaria saccharina (L.) Lamour. involves the development of a well-structured protoplast and an end wall possessing evenly spaced pores which are visualized by electron microscopy. The protoplast consists of organelles which are commonly found in brown algal cells, including nuclei, cup- or horseshoe-shaped chloroplasts, dictyosomes, mitochondria, and ER. Mitochondria and clusters of small vacuoles, presumably redistributed by the surging effect which occurs in sieve elements, were routinely observed in the vicinity of the end wall. Chloroplasts were seen in progressively degenerated states in older sieve elements, yet nuclei were determined to be non-necrotic. Numerous pores along the end walls interconnect adjacent sieve elements. Each pore is traversed by a strand of cytoplasm and surrounded by plasmalemma. The pores are open and possess no callose. In this paper the sieve element ultrastructures of L. saccharina are compared to those in L. groenlandica, Alaria marginata, Nereocystis lutkeana and Macrocystis pyrifera, and a possible phylogenetic specialization of sieve elements is presented in table form and discussed.  相似文献   

5.
Summary The stem ofPotamogeton natans is characterized by a central stelar vascular system with reduced xylem and abundant phloem. Wide sieve tubes composed of short sieve-tube members joined by simple sieve plates and associated with companion cells establish an effective conduit for assimilates. At each node the phloem forms a network of parallel sieve elements connecting the stem phloem to leaf and bud traces. InP. natans an axillary bud rarely develops into a side branch, its procambial vascular bundles are each connected to the nodal complex via separate anastomoses. Their most unusual components are the anastomosai sieve elements (ANSE), characterized by thin cell walls pitted all over by tiny callose-lined pores resembling plasmodesmata, which can be detected as bright areas by fluorescence microscopy after staining with aniline blue. Several layers of ANSE make up the centre of an anastomosis and link to both the nodal and bud stelar sieve tubes via mediating (MSE) and connecting sieve elements (CSE). The ultrastructural differentiation of ANSE, MSE, and CSE corresponds to that of normal sieve elements, i.e., in the mature stage they are enucleate, evacuolate, and have lost most of their cytoplasm. Their plastids are of form-P2c, containing many cuneate protein crystals, typical of monocotyledonous sieve elements. Quantitative aspects of the pore areas are discussed in relation to the functional significance of bud anastomoses.Abbreviations ANSE anastomosai sieve elements - CSE connecting sieve elements - FM fluorescence microscopy - LM light microscopy - MSE mediating sieve elements - TEM transmission electron microscopy Dedicated to Professor Dr. Rainer Kollmann on the occasion of his retirement  相似文献   

6.
A. Schulz 《Protoplasma》1986,130(1):12-26
Summary 48 hours after interrupting the root stele ofPisum, wound phloem initiated (proximally or distally to the wound) to reconnect the vascular stumps was found to contain some nucleate wound-sieve elements. At the elongating end of an incomplete wound-sieve tube these elements exhibit a sequence of ultrastructural changes as known from protophloem-sieve tubes. Elongation occurs by the addition of newly divided (wound-) sieve-element/companion-cell complexes. In order to dedifferentiate and assume a new specialization formerly quiescent stelar or cortical cells require at least one (mostly more) preliminary division. Companion cells are consequently obligatory sister cells to wound-sieve elements.By reconstruction using serial sections it could be shown that wound-sieve tubes elongate bidirectionally, starting in an early activated procambial cell of the stele. The elongation is directed by the existence of plasmodesmata, preferably when lying in primary pit fields, and by the plane of preceding divisions. Thus, the developing wound-sieve tube can deviate from the damaged bundle and radiate into the cortex as soon as the plane of the preceding divisions is favourable. In the opposite direction, elongating wound-sieve tubes run parallel to pre-existing phloem traces, thus broading their base at the bundle for the deviating part of the wound-sieve tube. Frequently an individual wound-sieve tube is supplemented at the bundle by a further wound-sieve tube which is partly running parallel to it. Both sieve tubes are interlinked with sieve plates by three-poled sieve elements.Ultrastructurally, the developmental changes of nucleate wound-sieve elements follow the known pattern. In spite of its contrasting origin and odd shape a mature wound-sieve element eventually has the same contents as regular sieve elements: sieve-element plastids, mitochondria, stacked ER and small amounts of P-protein within an electronlucent cytoplasm.  相似文献   

7.
E. P. Eleftheriou 《Planta》1994,193(2):266-274
The structural aberrations of the cell walls of protophloem sieve elements (PSEs) in roots of wheat (Triticum aestivum L. cv. Maris Huntsman) caused by the anti-microtubule drug colchicine were investigated by electron microscopy. The initial effect of the drug on cell wall development was found to be an exceptionally rough wall surface, presumably caused by an uncontrolled fusion of Golgi vesicles with the plasma membrane. Cellulose microfibrils, which in normal PSEs are aligned transversely to the long axis and parallel to the cortical microtubules, in colchicine-treated PSEs display a predominant longitudinal orientation. The pattern of wall development is disturbed by deposition of wall material also within the sieve pores of the sieve-pore/plasmodesmata complexes, resulting in evenly thickened walls instead of the normal uneven layers, and in narrowing the sieve pores to the size of plasmodesmata. In prolonged and continuous colchicine treatment, PSEs develop unusual wall ingrowths projecting deeply into the cytoplasm, creating an extraordinary cell type not found in normal roots. The results confirm the view of microtubule involvement in the proper deposition and orientation of cellulose microfibrils, and in the normal patterning of the cell wall thickenings of differentiating PSEs.Abbreviations c colchicine-treated - PSE protophloem sieve element The author is grateful to Dr. B. Galatis, Dr. P. Apostolakos and Dr. C. Katsaros, Institute of General Botany, University of Athens, Greece, for helpful discussions and suggestions, and for the generous gift of the colchicine used here. This work was carried out in the Department of Botany, University of Thessaloniki, Greece, while observations were also made in the Lehrstuhl für Zellenlehre, University of Heidelberg, Germany, and in the Department of Botany, University of Georgia, USA. The author is thankful to Prof. E. Schnepf (Zellenlehre, Heidelberg, Germany) and Prof. B.A. Palevitz (Department of Botany, University of Athens, Ga., USA), for generously providing access to their equipment and facilities. The work was financially supported in part by the Stiftung Volkswagenwerk and by the Research Committee, University of Thessaloniki (No 7537).  相似文献   

8.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

9.
Roots of Equisetum hyemale L. var. affine (Engelm.) A. A. Eat. were fixed in glutaraldehyde, postfixed in osmium tetroxide, and sieve elements of various ages were examined with the electron microscope. Young sieve elements are distinguished by their position within the vascular cylinder and by the presence of numerous refractive spherules, which originate within dilated portions of the endoplasmic reticulum (ER). Early in development, the sieve-element walls undergo a substantial increase in thickness. This is followed by the appearance of massive ER aggregates in the cytoplasm and then by a phase involving stacking and sequestering of the remaining ER. Nuclear degeneration is initiated shortly after the appearance of the ER aggregates. The chromatin condenses into masses of variable size along the inner surface of the nuclear envelope. The envelope then ruptures and chromatin is released into the cytoplasm. During the period of nuclear degeneration, mitochondria and plastids undergo structural modification, while components such as dictyosomes, microtubules, and ribosomes degenerate and disappear. The remaining cytoplasmic components assume a parietal position in the cell, leaving the lumen of the cell clear in appearance. At maturity, the plasmalemma-lined sieve element contains plastids, mitochondria, some ER, and refractive spherules. At this time many of the refractive spherules are discharged into the region of the wall. Pores between sieve elements occur largely on the end walls. During pore development, tubules of ER apparently traverse the pores, but because of the presence of massive callose deposits in the material examined, the true condition of mature pores could not be determined. The connections between mature sieve elements and pericycle cells are characterized by the presence of massive wall thickenings on the pericycle-cell side. Plasmodesmata in the wall thickening are matched by pores on the sieve-element side. Ontogenetic and cytoplasmic factors argue against use of the term “companion cell” for the vascular parenchyma cells associated with the sieve elements.  相似文献   

10.
Pruned source-sink transport systems from predarkened plants of Amaranthus caudatus L. and Gomphrena globosa L. were used to study the localization of 14C-labeled photosynthate imported into experimentally induced sink leaves by microautoradiography. During a 6-h (Amaranthus) or a 4-h (Gomphrena) transport period, 14C-assimilates were translocated acropetally from a mature source leaf provided with 14CO2, into a younger induced sink leaf (dark/-CO2). In addition, a young still-expanding source leaf exposed to 14CO2 exported 14C-assimilates basipetally into a mature induced sink leaf (dark/-CO2). Microautoradiographs showed that imported 14C-photosynthate was strongly accumulated in the sieve element/companion cell complexes of midveins, secondary veins, and minor veins of both the mature and the expanding sink leaf. Some label was also present in the vascular parenchyma and bundlesheath cells. In petioles, 14C-label was concentrated in the sieve element/companion cell complexes of all bundles indicating that assimilates were imported and distributed via the phloem. Moreover, a considerable amount of radioactivity unloaded from the sieve element/companion cell complexes of petiolar bundles, was densely located at sites of secondary wall thickenings of differen-tiating metaxylem vessels, and at sites of chloroplasts of the vascular parenchyma and bundle-sheath cells. These observations were more striking in petioles of Gomphrena than Amaranthus.Abbreviation se/cc sieve element/companion cell  相似文献   

11.
The physiological phloem equivalents, leptoids, of the polytrichaceous moss Atrichum undulatum appear to be similar to the nacreous sieve elements that occur in many higher plants. These leptoids are elongated cells with nacreous thickenings on their radial and tangential walls. Their oblique end walls, which lack such thickenings, are traversed by numerous pores through which the plasmalemma, endoplasmic reticulum, and cytoplasm are continuous between adjacent leptoids of a longitudinal file. These end walls closely resemble the simple sieve areas of the sieve elements found in Polypodium vulgare. The leptoid sieve pores have a median expanded area and frequently are occluded by small amorphous protein plugs at each end. Also, callose was observed as electron-luscent areas both on the faces of the end walls and as a thin cylinder surrounding the lateral area of each pore. Amorphous and granular cytoplasmic contents of the leptoids appear to be morphologically similar to the slime (P-protein) found in the sieve-tube elements of many angiosperms. Differentiating leptoids are characterized by the formation of numerous membrane-bound protein bodies in close association with polysomes and endoplasmic reticulum. As the leptoid matures, the contents of the protein bodies become dispersed in the cytoplasm. Ultrastructurally and ontogenetically the leptoids in the gametophores of A. undulatum appear almost identical to the sieve elements of P. vulgare and therefore should be considered sieve elements rather than phloem-like equivalents.  相似文献   

12.
At maturity the sieve elements of Ulmus americana L. contain a parietal network of very fine strands of slime which is continuous from one sieve element to the next through the sieve-plate pores. Upon injury this parietal network, which is derived from the slime bodies of immature sieve elements, sometimes becomes distorted into longitudinally oriented strands. Some of these strands frequently extend the length of the cells and often are continuous from one sieve element to the next through the sieve-plate pores. At times past such strands have erroneously been interpreted as normal constituents of the mature sieve-element protoplast. Many mature sieve elements of U. americana contain nuclei, which apparently persist for the life of the sieve elements. In addition, some evidence has been found in mature sieve elements for the presence of a membrane which delimits the parietal layer of cytoplasm, including its network of slime strands, from the vacuolar region of the cell.  相似文献   

13.
Shoot tissue of Psilotum nudum (L.) Griseb. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Young sieve elements can be distinguished from contiguous parenchyma cells by their distinctive plastids, the presence of refractive spherules, and the overall dense appearance of their protoplast. The refractive spherules apparently originate in the intracisternal spaces of the endoplasmic reticulum (ER). With increasing age the sieve-element wall undergoes a marked increase in thickness. Concomitantly, a marked increase occurs in the production of dictyosome vesicles, many of which can be seen in varying degrees of fusion with the plasmalemma. Other fibril- and vesicle-containing vacuoles also are found in the cytoplasm. In many instances the delimiting membrane of these vacuoles was continuous with the plasmalemma. Vesicles and fibrillar materials similar to those of the vacuoles were found in the younger portions of the wall. At maturity the plasmalemma-lined sieve element contains a parietal network of ER, plastids, mitochondria, and remnants of nuclei. The protoplasts of contiguous sieve elements are connected by solitary pores on lateral walls and pores aggregated into sieve areas on end walls. All pores are lined by the plasmalemma and filled with numerous ER membranes which arise selectively at developing pore sites, independently of the ER elsewhere in the cell. P-protein and callose are lacking at all stages of development.  相似文献   

14.
The cytochemical localization of ATPase in differentiating and mature phloem cells of Pisum sativum L. has been studied using a lead precipitation technique. Phloem transfer cells at early stages of differentiation exhibit strong enzyme activity in the endoplasmic reticulum (ER) and some reaction product is deposited on the vacuolar and plasma membranes. As the phloem transfer cells mature and develop their characteristic wall structures, strong enzyme activity can be observed in association with the plasma membranes and nuclear envelopes. Mature phloem transfer cells with elaborate cell-wall ingrowths show ATPase activity evenly distributed on plasma-membrane surfaces. Differentiating sieve elements show little or no enzyme activity. When sieve elements are fully mature they have reaction product in the parietal and stacked cisternae of the ER. There is no ATPase activity associated with P-protein at any stage of sieve-element differentiation or with the sieve-element plasma membranes. It is suggested that the intensive ATPase activity on the plasma membranes of the transfer cells is evidence for a transport system involved in the active movement of photosynthetic products through these cells.Key to labeling in the figures ER endoplasmic reticulum - P parenchyma cell - PP P-protein - SE sieve element - SPP sieve-plate pore - TC transfer cell  相似文献   

15.
The immature sieve cell of Pinus strobus contains all of the protoplasmic components commonly encountered in young cell types. In addition, it contains slime bodies with distinct double-layered limiting membranes. The mature sieve cell is lined by a narrow layer of cytoplasm consisting of a plasmalemma, one or more layers of anastomosing tubules of endoplasmic reticulum, numerous mitochondria, starch granules and crystal-like bodies. Each mature cell contains a necrotic nucleus. Ribosomes and dictyosomes are lacking. Strands derived ontogenetically from the slime bodies of the immature cell traverse the central cavity and are continuous with those of neighboring sieve cells through the plasmalemma-lined pores of the sieve areas. Sieve-area pores are also traversed by numerous endoplasmic membranes. A membrane was not found separating the parietal layer of cytoplasm from the large central cavity.  相似文献   

16.
E. P. Eleftheriou 《Protoplasma》1996,193(1-4):204-212
Summary Protophloem sieve elements (PSEs) in roots of wheat (Triticum aestivum L.) are arranged in single vertical files. The number of PSEs within the files increases by symmetrical divisions, which take place after the completion of asymmetrical (formative) divisions and before the initiation of differentiation. The divisions are preceded by well defined pre-prophase bands (PPB) of microtubules, which surround the nucleus in an equatorial position. In the cytoplasmic region between the nuclear surface and the PPB, perinuclear and endoplasmic microtubules were observed. The perinuclear microtubules are considered as part of the developing spindle, while the endoplasmic ones interlink the perinuclear microtubules with the PPB. Dividing cells do not show any signs of incipient differentiation. The first and most reliable indication of a commencing differentiation is provided by the sieve-element plastids that begin to accumulate dense crystalloid inclusions in the very young PSEs. In mature PSEs plastids contain two kinds of crystalloid inclusions, dense and thin, in a translucent stroma. Depending on the plastid-inclusions criterion it was shown that: (a) the PSEs of a given root do not initiate differentiation at exactly the same stage, (b) the developmental sequence extends to a span of 7–9 actively differentiating PSEs arranged in a single vertical file, and (c) each PSE needs about 16–21 h to pass through the whole developmental sequence. In the last two differentiating PSEs of a file, mitochondria were found to be enveloped by single cisternae of ER. The association is temporary as it is lost in the first PSEs with an autolysed lumen. During differentiation, Golgi bodies were abundant and active in producing vesicles involved in cell wall development. Golgi vesicles were also found among the microtubules of the PPB, but no local thickening was observed. Golgi bodies disorganize in the last stages of autolysis and disappear in mature sieve elements.Abbreviations ER endoplasmic reticulum - MSE metaphloem sieve element - PPB pre-prophase band - PSE protophloem sieve element Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

17.
Monacelli  B.  Altamura  M. M.  Pasqua  G.  Biasini  M. G.  Sala  F. 《Protoplasma》1988,142(2-3):156-163
Summary A histological study ofin vitro cultured cotyledonary expiants of tomato (Lycopersicon esculentum) was performed in order to determine the site (differentiated tissue or developing callus) and the mode of plant regeneration.Results have shown that callus develops at the excision sites of cotyledonary expiants and that shoots are formed exclusively within the unorganized callus: excision areas are the only morphogenetic sites and the proximal excision is the preferred site for plant regeneration.Shoots differentiate by organogenesis within the superficial region of the callus. Few neocambial cells cooperate in the neoformation. Origin from a single cell is highly unlikely since rarely observed single activated cells never developed into shoots.Regenerated plants may be chimeras if invitro culture induces genetic diversity in the initial cells.Abbreviations IAA Indole-3-acetic acid - c callus - d vegetative dome - s shoot - ad adaxial - ab abaxial - t tracheid - p parenchyma - S sieve tube  相似文献   

18.
19.
黄瓜韧皮部的类血影蛋白   总被引:2,自引:0,他引:2  
以黄瓜 (CucumissativusL .)叶柄为实验材料 ,应用胶体金免疫电镜技术证明类血影蛋白存在于韧皮部的筛管_伴胞复合体中 ,广泛分布于筛分子中的韧皮蛋白纤丝以及筛分子网络结构上 ,并且分布在伴胞的细胞质和线粒体膜以及筛分子与伴胞之间的分支状胞间连丝上 ,表明该蛋白可能由伴胞合成并经由二者之间的胞间连丝运输到筛分子中。用免疫印迹技术证明 ,黄瓜韧皮部汁液蛋白中存在类血影蛋白 ,其分子量约为 2 6 0kD ,与动物细胞中血影蛋白的分子量接近  相似文献   

20.
Leaf tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. The very young sieve elements can be distinguished from contiguous parenchyma cells by their distinctive plastids and the presence of crystalline and fibrillar proteinaceous material in dilated cisternae of the rough ER. During differentiation, the portions of ER enclosing this proteinaceous substance become smooth surfaced and migrate to the cell wall. Along the way they apparently form multivesicular bodies which then fuse with the plasmalemma, discharging their contents to the outside. At maturity, the sieve element contains an elongate nucleus, which consists of dense chromatin material, and remnants of the nuclear envelope. In addition, the mature sieve element is lined by a plasmalemma and a parietal, anastomosing network of smooth ER. Both plastids and mitochondria are present. P-protein is lacking at all stages of development. Tonoplasts are. not discernible in mature sieve elements. The end walls of mature sieve elements contain either plasmodesmata or sieve pores or both, but only plasmodesmata occur in the lateral walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号