首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A set of AT-rich repeats is a common motif in prokaryotic replication origins. We have screened for proteins binding to the AT-rich repeat region in plasmids F, R1 and pSC101 using an electrophoretic mobility shift assay with PCR-amplified DNA fragments from the origins. The IciA protein, which is known to bind to the AT-rich repeat region in the Escherichia coli origin of chromosome replication, oriC, was found to bind to the corresponding region from plasmids F (oriS) and R1, but not to pSC101. DNase I footprint analysis showed that IciA interacted with the AT-rich region in both F and R1. When the IciA gene was deleted, the copy number of plasmid F increased somewhat, whereas there was no major effect on the replication of pSC101 and R1, or on the E. coli chromosome.  相似文献   

2.
3.
4.
The minimal replication origin (ori) of the plasmid pSC101 has been previously defined as an approximately 220-bp region by using plasmids defective in the par region, which is a cis-acting determinant of plasmid stability. This ori region contains the DnaA binding sequence, three repeated sequences (iterons), and an inverted repeat (IR) element (IR-1), one of the binding sites of an initiator protein, Rep (or RepA). In the present study, we show that plasmids containing par can replicate at a nearly normal copy number in the absence of IR-1 but still require a region (the downstream region) between the third iteron and IR-1. Because par is dispensable in plasmids retaining IR-1, par and IR-1 can compensate each other for efficient replication. The region from the DnaA box to the downstream region can support DNA replication at a reduced frequency, and it is designated "core-ori." Addition of either IR-1 or par to core-ori increases the copy number of the plasmid up to a nearly normal level. However, the IR-1 element must be located downstream of the third iteron (or upstream of the rep gene) to enhance replication of the plasmid, while the par region, to which DNA gyrase can bind, functions optimally regardless of its location. Furthermore, the enhancer activity of IR-1 is dependent on the helical phase of the DNA double helix, suggesting that the Rep protein bound to IR-1 stimulates the activation of ori via its interaction with another factor or factors capable of binding to individual loci within ori.  相似文献   

5.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

6.
The minimal P1 replicon encompasses an open reading frame for the essential replication protein, RepA, bracketed by two sets of multiple 19-base pair repeated sequences, incA and incC. This study focused on the interaction of RepA with the incC and incA repeated sequences because earlier studies suggested that incA might control P1 copy number by titrating limiting amounts of RepA and because the incC repeats, which are part of the origin of replication, contain the promoter for repA. RepA is essential for origin function, autoregulates its own synthesis from the promoter, and, when overproduced, blocks origin function. In this study, RepA was overproduced from an expression vector and purified to 90% homogeneity. The binding of RepA to the DNA encompassing repeat sequences was assayed by monitoring the mobility of protein-DNA complexes on polyacrylamide gels. Distinct species of retarded bands were seen with the maximum number of bands corresponding to the number of repeats present in the target fragment. No evidence was found for RepA binding to fragments not containing the repeats. This suggests that the specific binding of RepA to the repeats may be involved in each of the diverse activities of RepA.  相似文献   

7.
The replication initiator protein RepA of the IncB plasmid pMU720 was purified and used in DNase I protection assays in vitro. RepA protected a 68-bp region of the origin of replication of pMU720. This region, which lies immediately downstream of the DnaA box, contains four copies of the sequence motif 5'AANCNGCAA3'. Mutational analyses identified this sequence as the binding site specifically recognized by RepA (the RepA box). Binding of RepA to the RepA boxes was ordered and sequential, with the box closest to the DnaA binding site (box 1) occupied first and the most distant boxes (boxes 3 and 4) occupied last. However, only boxes 1, 2, and 4 were essential for origin activity, with box 3 playing a lesser role. Changing the spacing between box 1 and the other three boxes affected binding of RepA in vitro and origin activity in vivo, indicating that the RepA molecules bound to ori(B) interact with one another.  相似文献   

8.
P1 plasmid replication. Role of initiator titration in copy number control   总被引:24,自引:0,他引:24  
The copy number control locus incA of unit copy plasmid P1 maps in a region containing nine 19 base-pair repeats. Previous results from studies in vivo and in vitro indicated that incA interacts with the plasmid-encoded RepA protein, which is essential for replication. It has been proposed that the repeat sequences negatively control copy number by sequestering the RepA protein, which is rate-limiting for replication. Our results lend further support to this hypothesis. Here we show that the repeats can be deleted completely from P1 miniplasmids and the deletion results in an approximately eightfold increase in plasmid copy number. So, incA sequences are totally dispensable for replication and have only a regulatory role. The copy number of incA-deleted plasmids can be reduced if incA sequences are present in trans or are reincorporated at two different positions in the plasmid. This reduction in copy number is not due to lowered expression of the repA gene in the presence of incA. We show that one repeat sequence is sufficient to bind RepA and can reduce the copy number of incA-deleted plasmids. When part of the repeat was deleted, it lost its ability to bind as well as influence copy number. These results show a strong correlation between the capacity of incA repeats to bind RepA protein both in vivo and in vitro, and the function of incA in the control of copy number.  相似文献   

9.
Minireplicons from the I-complex plasmids R387 (IncK) and pIE545 (IncZ) were constructed, and the nucleotide sequences of their replication regions were compared with that of the B plasmid, pMU720. The coding sequence of the putative replication protein, RepA, of each plasmid was located. RepA of K and B plasmids were homologous, whereas RepA of Z resembled RepA1 of FII plasmid. Sequences upstream of RepA were conserved in the three I-complex plasmids. Group B and Z plasmids were incompatible.  相似文献   

10.
DNA replication of the enterobacterial plasmid R1 is initiated by RepA protein. We have developed a new procedure for the purification of RepA from inclusion bodies, which involves CHAPS-mediated solubilization. This method has been also used for the thermosensitive mutant protein RepA2623. The nucleoprotein complexes obtained with both proteins and oriR, the origin of replication, are studied in this paper. DNaseI and hydroxyl-radical footprinting suggest the presence in oriR of two sites with different affinity for RepA separated by eight helical turns. The pattern of hypersensitive sites in the footprints indicates that the oriR sequence, when complexed with RepA, is curved. The binding of RepA molecules to oriR is co-operative and this co-operativity is defective in the thermosensitive protein. Band-shift analysis of RepA-oriR complexes revealed the existence of a species with an anomalously high electrophoretic mobility that appears after formation of the first RepA-oriR complex and requires the sequential interaction of RepA with its two distal binding sites. These features lead us to propose that protein-protein interactions between RepA bound to both distal sites could be responsible for oriR looping. This model represents a novel mechanism that results in activation of an origin in a replicon that does not contain iterons.  相似文献   

11.
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.  相似文献   

12.
13.
The functional ori1 of the 5.6kb gonococcal R-plasmid pSJ5.6 contains an A-T rich region followed by four 22bp direct repeats and one 19bp inverted repeat. The replication region of the plasmid also contains a gene encoding for a 39kD RepA protein. We have further assessed the functionality of the replication region in pSJ5.6, an-iteron type plasmid, using in vivo complementation assays in Escherichia coli. A 2.1kb PstI-RsaI fragment containing the ori1 and repA gene of pSJ5.6 was cloned into vector pZErO -2 to obtain pZA-MRR. The pUC origin in pZA-MRR was deleted to render the plasmid dependable on the cis-acting ori1 for replication. The resulting plasmid, pMRR, was capable of replication and maintenance in E. coli. We also cloned the ori1 and repA gene separately to obtain pA-Ori and pZG-Rep, respectively. Using in vivo complementation assays, we demonstrated that the ori1(+) plasmid (pA-Ori) was maintained only when the RepA protein was supplied in trans by the high copy number plasmid pZG-Rep.  相似文献   

14.
Mutation analysis of the rolling circle (RC) replication initiator protein RepA of plasmid pC194 was targeted to tyrosine and acidic amino acids (glutamate and aspartate) which are well conserved among numerous related plasmids. The effect of mutations was examined by an in vivo activity test. Mutations of one tyrosine and two glutamate residues were found to greatly impair or abolish activity, without affecting affinity for the origin, as deduced from in vitro gel mobility assays. We conclude that all three amino acids have a catalytic role. Tyrosine residues were found previously in active sites of different RC plasmid Rep proteins and topoisomerases, but not in association with acidic residues, which are a hallmark of the active sites of DNA hydrolyzing enzymes, such as the exo- and endonucleases. We propose that the active site of RepA contains two different catalytic centers, corresponding to a tyrosine and a glutamate. The former may be involved in the formation of the covalent DNA-protein intermediate at the initiation step of RC replication, and the latter may catalyze the release of the protein from the intermediate at the termination step.  相似文献   

15.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

16.
17.
18.
The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, alpha and beta, in the origins as specificity determinants and showed that when each component of the region A-site alpha pair and the region B-site beta pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site alpha. By using an electrophoretic mobility shift assay, we demonstrated that region B and site beta play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site alpha were involved in the efficient unwinding of several nucleotide residues around site alpha, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.  相似文献   

19.
20.
The initiator protein of the plasmid pPS10, RepA, has a putative helix-turn-helix (HTH) motif at its C-terminal end. RepA dimers bind to an inverted repeat at the repA promoter (repAP) to autoregulate RepA synthesis. [D. García de Viedma, et al. (1996) EMBO J. in press]. RepA monomers bind to four direct repeats at the origin of replication (oriV) to initiate pPS10 replication This report shows that randomly generated mutations in RepA, associated with defficiencies in autoregulation, map either at the putative HTH motif or in its vicinity. These mutant proteins do not promote pPS10 replication and are severely affected in binding to both the repAP and oriV regions in vitro. Revertants of a mutant that map in the vicinity of the HTH motif have been obtained and correspond to a second amino acid substitution far upstream of the motif. However, reversion of mutants that map in the helices of the motif occurs less frequently, at least by an order of magnitude. All these data indicate that the helices of the HTH motif play an essential role in specific RepA-DNA interactions, although additional regions also seem to be involved in DNA binding activity. Some mutations have slightly different effects in replication and autoregulation, suggesting that the role of the HTH motif in the interaction of RepA dimers or monomers with their respective DNA targets (IR or DR) is not the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号