首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV irradiation of purified mengovirus resulted in a very rapid inactivation of the infectivity of the virions (D(37) [37% survival dose] = 700 ergs/mm(2)) which correlated in time with the formation of uracil dimers in the viral RNA. During the first 2 min of irradiation, an average of 1.7 uracil dimers were formed per PFU of virus inactivated. Hemagglutination activity of the virions began to decrease only after a lag period of about 5 min and at a much lower rate (D(37) = 84,000 ergs/mm(2)). This decrease coincided in time with the appearance of altered proteins in the capsid and a structural change in the capsid. Although 10- to 20-min irradiated virions appeared intact in the electron microscope and sedimented at 150S in sucrose density gradients, the RNA of the virions became accessible to RNase and extractable by low concentrations of sodium dodecyl sulfate, and the virions broke down upon equilibrium centrifugation in CsCl gradients. During longer periods of irradiation (30 to 60 min), a progressively greater proportion of the virions were converted to 14S protein particles and 80S ribonucleoprotein particles composed of intact viral RNA and about 30% of the capsid proteins, alpha, beta, and gamma. Empty capsids were not detectable at any time during 60 min of irradiation, by which time disruption of the virions was complete. Irradiation of complete virions also resulted in an increased sedimentation rate of the viral RNA and in the covalent linkage to the viral RNA of about 1% of the total capsid protein in the form of heterogeneous low-molecular-weight polypeptides. The two observations seem to be causally related, since irradiation of isolated viral RNA did not result in an increase in sedimentation rate of the RNA, even though uracil dimer formation in viral RNA occurred at about the same rate and to the same extent whether intact virions or viral RNA were irradiated.  相似文献   

2.
Disruption of purified lymphocytic choriomeningitis (LCM) virus with Nonidet P-40 in 0.5 M KCl followed by sucrose gradient centrifugation in 0.3 M KCl led to the isolation of two viral nucleoproteins (RNPs) as well as 40S and 60S ribosomal subunits. The largest viral RNP sedimented heterogenously at 123S to 148S and was associated with 23S and 31S viral RNA. The other viral RNP sedimented at 83S and was associated with 23S viral RNA. The buoyant density in CsCl was determined to be 1.32 g/cm3 for the viral RNP. Densities of 1.52 and 1.60 g/cm3 were determined for the 40S and 60S subunits, similar to those of the BHK-21 cells subunits dissociated by 0.5 M KCl. The viral RNPs were partly sensitive to RNase.  相似文献   

3.
A ribonucleoprotein particle containing about 20% ribonucleic acid (RNA), and containing little if any phospholipid or glucosamine, was recovered in high yield after treatment of Schmidt-Ruppin strain of Rous sarcoma virus and B77 virus with the nonionic detergent Nonidet P-40. This structure, which probably derives from the internal ribonucleoprotein filament described in electron microscopy studies, contained 80 to 90% of the viral 60 to 70S RNA and only about 10% of the protein present in intact virions. It sedimented in glycerol density gradients at approximately 130S and had a buoyant density in sucrose of about 1.34 g/ml. Studies with (32)P-labeled virus indicated that the ribonucleoprotein particle contained approximately 30 4S RNA molecules per 10(7) daltons of high-molecular-weight viral RNA. Intact virions contained about 70 4S RNA molecules per 10(7) daltons of high-molecular-weight RNA. Electrophoretic studies in dodecyl sulfate-containing polyacrylamide gels showed that the ribonucleoprotein particle contained only 5 of the 11 polypeptides found in the virion; of these the major component was a polypeptide weighing 14,000 daltons.  相似文献   

4.
Vaccinia virus, strain WR, was propagated in HeLa cells, L mouse fibroblats, or primary chicken embryo fibroblasts in the presence of [5- (3)H]uridine. Carefully purified virions were found to contain significant amounts of labeled trichloroacetic acid-precipitable material which was rendered acid soluble when digested with pancreatic RNase or hydrolyzed in alkali. Controlled degradation of virions with Nonidet P-40 and 2-mercaptoethanol demonstrated that 65 to 80% of the [5- (3)H]uridine-labeled molecules resided in the viral core. When the total nucleic acids were extracted from viral cores prepared from virions propagated in HeLa cells, 30 to 50% of the total incorporated [5- (3)H]uridine was found in RNA; in L mouse fibroblasts, 40 to 50%; in primary chicken embryo fibroblasts, 50 to 60%. The RNA molecules do not appear to be covalently linked to the viral DNA genome but sediment in sodium dodecyl sulfate-sucrose gradients as 8 to 10S species relative to ribosomal RNA.  相似文献   

5.
6.
7.
The double-stranded RNA segments of infectious pancreatic necrosis virus were extracted from virions by a method which avoids proteinase. In contrast to proteinase-treated RNA, such segments (i) exhibited a lower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels and agarose gels, (ii) had a slightly lower buoyant density, and (iii) demonstrated a marked tendency toward aggregation as observed by electron microscopy. A small amount of protein tightly bound to the RNA could account for the above properties, and a 110,000-dalton protein was liberated from purified virion RNA by sequential digestion with RNase III and RNase A. The amount of radioactivity associated with RNA from virions labeled in vivo with [35S]methionine suggested that an average of 1.4 molecules was bound per RNA segment. Interactions between RNA segments seen in electron micrographs appeared to occur only among the ends of the segments, suggesting these were the exclusive sites of protein attachment.  相似文献   

8.
During normal maturation and majority of pulse-labeled simian virus 40 DNA progresses from chromatin to previrions and virions within 5 h. UV light inhibits this progression. In heavily irradiated cultures (108 J m-2) most of the simian virus 40 DNA synthesized immediately before irradiation remains as chromatin for at least 5 h. This inhibition of maturation seems to be a result of the inhibition of protein synthesis. The data suggest that the pool of proteins required for maturation is sufficient to convert one-third of the simian virus 40 DNA molecules labeled in a 10-min pulse (at 33 h postinfection) from chromatin to previrions and virions and is exhausted within 1 h.  相似文献   

9.
Iodination of reovirus, cytoplasmic polyhedrosis virus (CPV), and wound tumor virus (WTV), and their respective subviral forms, followed by analysis of the labeled polypeptides by using polyacrylamide gel electrophoresis, has been used to compare the protein contents of these three diplornaviruses. This approach, when combined with electron microscopy and buoyant density determinations, appears capable of localizing individual polypeptides in some of the viral and subviral forms. CPV (p = 1.435 g/cm(3)) seems to resemble reovirus cores (p = 1.440 g/cm(3)) in both ultrastructure and polypeptide composition. CPV is composed of five polypeptides with molecular weights of about 151,000, 142,000, 130,000, 67,000, and 33,000. The polyhedral matrix, which in nature encapsulates the virions, is, in turn, composed mainly of two polypeptide species with molecular weights of about 30,000 and 20,000, and several minor proteins. The proteins of WTV consist mainly of four species of polypeptide with molecular weights of about 156,000, 122,000, 63,000, and 44,000, and several minor components. These molecular weight determinations are consistent with the hypothesis that, as has been suggested for reovirus, the viral proteins of CPV and WTV seem to be coded for by monocistronic mes senger RNA molecules transcribed from distinct segments of the double-stranded RNA viral genomes.  相似文献   

10.
11.
The buoyant density of acute haemorrhagic conjunctivitis virions labeled with either [(3)H]uridine or [(3)H]leucine was 1.34 g/ml in CsCl and 1.25 g/ml in sucrose. RNA extracted from the virions gave a sedimentation coefficient of approximately 34S in sucrose, and was found to be sensitive to RNase. Molecular weight of RNA was calculated to be 2.5 x 10(6) using poliovirus RNA for reference.  相似文献   

12.
Nuclear matrices were prepared by DNase and high salt extraction of SV40-infected epithelial monkey cells. The matrices retain the majority of SV40 virions. This conclusion is based on electron microscopic observations of the occurrence of encapsidated viral DNA that is resistant to DNase digestion and on the analysis of viral proteins by gel electrophoresis. Pulse labeled SV40 RNA is also associated with the nuclear matrix (less than 15% of the viral RNA is removed by DNase and high salt). Pulse-chase experiments revealed that processing of SV40 RNA takes place on the nuclear matrix and the processed molecules are directly transported to the cytoplasm where they are associated with the cytoskeleton. These results suggest a central role for the nuclear and cytoplasmic substructures in virus assembly and in the biogenesis of viral RNA.  相似文献   

13.
Virus labeled with 3H-uridine or 32P-orthophosphate was purified by CsCl equilibrium centrifugation of concentrated virus materials from infectious BHK21-WI2 cell culture fluids. A single clearly visible band formed in the gradient coinciding with a sharp peak of radioactivity having a buoyant density of 1.19 g/ml. Infectivity exhibited a broader distribution with a peak coinciding with the visible band, in which numerous virions of the virus were observed with the aid of an electron microscope using the phosphotungstic negative staining technique. Ribonucleic acid (RNA) extracted from the purified virus by the phenol method exhibited a rather broad distribution of radioactivity with a major peak at about 12 S when analyzed by the sucrose density gradient centrifugation technique. Viral RNA centrifuged in the gradient after ribonuclcase (RNase) treatment showed a single sharp peak at about 12 S. These findings seemed to indicate that the virion of this virus contained double-stranded RNA. Double strandedness of the viral RNA was further corroborated by an examination of the base composition, reduced resistance to RNase in low salt concentration and a sharp thermal transition with a relatively high melting temperature of 85 C. The virus could not be classified either in the rhabdovirus group, although the shape of the virion resembled that of the rhabdoviruses, or in the reovirus group since the virus was ether-sensitive. It seemed necessary to create a new genus for this virus.  相似文献   

14.
The eukaryotic nucleolus contains a large number of small RNA molecules that, in the form of small nucleolar ribonucleoprotein complexes (snoRNPs), are involved in the processing and modification of pre-rRNA. One of the snoRNPs that has been shown to possess enzymatic activity is the RNase MRP. RNase MRP is an endoribonuclease involved in the formation of the 5' end of 5.8S rRNA. In this study the association of the hPop1 protein with the RNase MRP complex was investigated. The hPop1 protein seems not to be directly bound to the RNA component, but requires nt 1-86 and 116-176 of the MRP RNA to associate with the RNase MRP complex via protein-protein interactions. UV crosslinking followed by ribonuclease treatment and immunoprecipitation with anti-Th/To antibodies revealed three human proteins of about 20, 25, and 40 kDa that can associate with the RNase MRP complex. The 20- and 25-kDa proteins appear to bind to stem-loop I of the MRP RNA whereas the 40-kDa protein requires the central part of the MRP RNA (nt 86-176) for association with the RNase MRP complex. In addition, we show that the human RNase P proteins Rpp30 and Rpp38 are also associated with the RNase MRP complex. Expression of Vesicular Stomatitis Virus- (VSV) tagged versions of these proteins in HeLa cells followed by anti-VSV immunoprecipitation resulted in coprecipitation of both RNase P and RNase MRP complexes. Furthermore, UV crosslinking followed by anti-Th/To and anti-Rpp38 immunoprecipitation revealed that the 40-kDa protein we detected in UV crosslinking is probably identical to Rpp38.  相似文献   

15.
16.
Semlike forest virus capsid protein cosedimented with the large ribosomal subunit at 60S in sucrose gradients after treatment of cytoplasm from infected cells with Triton X-100 and EDTA. In CsCl gradients the capsid protein banded with the subunit at a density of 1.56 to 1.57 g/cm3. Most of the capsid protein could be detached from the 60S structure by treatment with 0.8 M KCl. The ribonucleoprotein of the 26S RNA had a sedimentation value of 53S and a density of 1.50 g/cm3 and could thus be separated from the 60S structure. The data suggest that the capsid protein binds to the large ribosomal subunit, but not to the viral 26S RNA.  相似文献   

17.
Black beetle virus: messenger for protein B is a subgenomic viral RNA   总被引:16,自引:13,他引:3       下载免费PDF全文
Black beetle virus induces the synthesis of three new proteins, protein A (molecular weight, 104,000), protein α (molecular weight, 47,000), and protein B (molecular weight, 10,000), in infected Drosophila cells. Two of these proteins, A and α, are known to be encoded by black beetle virus RNAs 1 and 2, respectively, extracted from virions. We found that RNA extracted from infected cells directed the synthesis of all three proteins when it was added to a cell-free protein-synthesizing system. When polysomal RNA was fractionated on a sucrose density gradient, the messengers for proteins A and α cosedimented with viral RNAs 1 (22S) and 2 (15S), respectively. However, the messenger for protein B was a 9S RNA (RNA 3) not found in purified virions. Like the synthesis of viral RNAs 1 and 2, intracellular synthesis of RNA 3 was not affected by the drug actinomycin D at concentrations which blocked synthesis of host cell RNA. This indicated that RNA 3 is a virus-specific subgenomic RNA and, therefore, that protein B is a virus-encoded protein.  相似文献   

18.
Avian sarcoma virus (ASV)-specific RNA was purified from ASV-infected cells by using hybridization techniques which employ polydeoxycytidylic acid-elongated DNA complementary to ASV RNA as well as chromatography on polyinosinic acid-Sephadex columns. The purity and nucleotide sequence composition of purified, virus-specific RNA were established by rehybridization experiments and analysis of labeled RNase T1-resistant oligonucleotides by two-dimensional polyacrylamide gel electrophoresis. Polyadenylic acid-containing RNA purified from ASV-infected cells contained approximately 1 to 4% virus-specific RNA, compared with 0.06 to 0.15% observed in uninfected cells. Sucrose gradient analysis of virus-specific RNA isolated from ASV-infected cells revealed two major classes of polyadenylated viral RNA with sedimentation values of 36S and 26-28S. Cells infected with transformation-defective ASV (virus containing a deletion of the sarcoma gene) contained 34S and 20-22S viral RNA species. Double-label experiments employing infected cells labeled initially for 48 h with [3H]uridine and then for either 30, 60, or 240 min with [32P]phosphate showed that the intracellular accumulation of genome-length RNA (36S) was significantly faster than that of the 26-28S viral RNA species.  相似文献   

19.
The sedimentation behavior of transmissible gastroenteritis coronavirus (TGEV) was analyzed. Upon sucrose gradient centrifugation, the major virus band was found at a density of 1.20 to 1.22 g/cm(3). This high density was observed only when TGEV with a functional sialic acid binding activity was analyzed. Mutants of TGEV that lacked sialic acid binding activity due to a point mutation in the sialic acid binding site of the S protein were mainly recovered at a lower-density position on the sucrose gradient (1.18 to 1.19 g/cm(3)). Neuraminidase treatment of purified virions resulted in a shift of the sedimentation value from the higher to the lower density. These results suggest that binding of sialoglycoproteins to the virion surface is responsible for the sedimentation behavior of TGEV. When purified virions were treated with octylglucoside to solubilize viral glycoproteins, ultracentrifugation resulted in sedimentation of the S protein of TGEV. However, when neuraminidase-treated virions or mutants with a defective sialic acid binding activity were analyzed, the S protein remained in the supernatant rather than in the pellet fraction. These results indicate that the interaction of the surface protein S with sialoglycoconjugates is maintained after solubilization of this viral glycoprotein by detergent treatment.  相似文献   

20.
Cetyltrimethylammonium bromide (CTAB) modified tobacco mosaic virus (TMV) virions so that the intrinsic fluorescence changed, viral infectivity decreased, sensitivity to RNase or UV irradiation increased, and coat protein subunits were released by the addition of Triton X-100. The change in fluorescence emission at 320 nm shifted to 340 nm was observed at 100 μg of CTAB per ml. This represents a change in the tryptophan environment inside the virion. At a lower concentration of CTAB, intersubunit contact was weakened, resulting in the release of coat protein subunits and an increase in RNase sensitivity. The release of coat protein took place gradually and two relatively stable intermediates were observed. Increase in UV sensitivity was observed at a lower concentration of CTAB and formation of pyrimidine hydrate was involved in this inactivation. The nature of the minor structural change leading to UV inactivation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号