首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 339 毫秒
1.
2.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

3.
We examined the mating frequencies of queens in a social wasp, Dolichovespula arenaria (Vespinae) using DNA microsatellites. Five of the seven colonies supported the hypothesis of single mating by queens. The other two colonies supported two and three matings, with effective paternity of 1.48 and 1.91. Mean worker relatedness was 0.77 +/- 0.09. In two of the four male-containing colonies, all were likely progeny of the queen. In the other two colonies workers produced 8 and 14% of the male wasps. Overall, 94.3% of the male wasps were likely progeny of the queen. These patterns are consistent with published studies of vespine wasps.  相似文献   

4.
The unique nomadic life-history pattern of army ants (army ant adaptive syndrome), including obligate colony fission and strongly male-biased sex-ratios, makes army ants prone to heavily reduced effective population sizes (N e). Excessive multiple mating by queens (polyandry) has been suggested to compensate these negative effects by increasing genetic variance in colonies and populations. However, the combined effects and evolutionary consequences of polyandry and army ant life history on genetic colony and population structure have only been studied in a few selected species. Here we provide new genetic data on paternity frequencies, colony structure and paternity skew for the five Neotropical army ants Eciton mexicanum, E. vagans, Labidus coecus, L. praedator and Nomamyrmex esenbeckii; and compare those data among a total of nine army ant species (including literature data). The number of effective matings per queen ranged from about 6 up to 25 in our tested species, and we show that such extreme polyandry is in two ways highly adaptive. First, given the detected low intracolonial relatedness and population differentiation extreme polyandry may counteract inbreeding and low N e. Second, as indicated by a negative correlation of paternity frequency and paternity skew, queens maximize intracolonial genotypic variance by increasingly equalizing paternity shares with higher numbers of sires. Thus, extreme polyandry is not only an integral part of the army ant syndrome, but generally adaptive in social insects by improving genetic variance, even at the high end spectrum of mating frequencies.  相似文献   

5.
The mating system of honey bees (genus Apis) is extremely polyandrous, where reproductive females (queens) typically mate with 12 or more males (drones) during their mating flight(s). The evolutionary implications for hyperpolyandry have been subject to considerable debate and empirical testing because of the need to understand the proximate mechanisms that drive such extreme mating behavior despite the potential costs. The ability of queens to gauge and adjust their reproductive success is therefore important for selection to act on queen mating number at both the evolutionary (colony-level) and proximate (individual-level) timescales. We observed the mating flight activities of 80 queens in their respective mating nucleus hives each with a modified entrance that restricts flight attempts. We also attached a small weight (0, 16, or 38 mg) onto each queen’s thorax as a means of imposing additional flight costs. We then compared queens that were restricted from taking multiple mating flights to those that started oviposition after a single flight for their mating numbers as quantified by microsatellite analyses of their respective worker offspring. We found that neither additional weight nor restricted mating attempts had any significant effect on the effective mating frequencies of the experimental queens during their single mating flight. This observation suggests that queens are not adjusting their nuptial flight activity according to their precise mating number during their flight. These findings provide insights into the proximate regulation of honey bee queen mating behavior and the fitness consequences of hyperpolyandry at the colony level.  相似文献   

6.
Understanding which parties regulate reproduction is fundamental to understanding conflict resolution in animal societies. In social insects, workers can influence male production and sex ratio. Surprisingly, few studies have investigated worker influence over which queen(s) reproduce(s) in multiple queen (MQ) colonies (skew), despite skew determining worker-brood relatedness and so worker fitness. We provide evidence for worker influence over skew in a functionally monogynous population of the ant Leptothorax acervorum. Observations of MQ colonies leading up to egg laying showed worker aggressive and non-aggressive behaviour towards queens and predicted which queen monopolized reproduction. In contrast, among-queen interactions were rare and did not predict queen reproduction. Furthermore, parentage analysis showed workers favoured their mother when present, ensuring closely related fullsibs (average r = 0.5) were reared instead of less related offspring of other resident queens (r ≤ 0.375). Discrimination among queens using relatedness-based cues, however, seems unlikely as workers also biased their behaviour in colonies without a mother queen. In other polygynous populations of this species, workers are not aggressive towards queens and MQs reproduce, showing the outcome of social conflicts varies within species. In conclusion, this study supports non-reproductive parties having the power and information to influence skew within cooperative breeding groups.  相似文献   

7.
In polygyne ants (multiple queens per colony) factors that affect the distribution and survival of queens may play a key role in shaping the population-wide mating system and colony kin structure. The aim of this paper was to study the breeding system in two populations of different age in the facultatively polygyne ant Formica fusca. Both the observed numbers of queens, and the relatedness patterns among queens, workers and colony fathers were compared in two adjacent populations (ages 17 years and > 100 years) in Southern Finland. The results showed that both the mating system and colony kin structure differed between the study populations. In the old population the relatedness among workers, queens and colony fathers was high. The queens were also related to their mates, resulting in significant inbreeding in workers, but not in queens. Finally, the number of queens per colony fluctuated between years, suggesting queen turnover, and nest-mate queens shared their reproduction unequally (reproductive skew). In the younger population relatedness among queens and workers was lower than in the old population, and the colony fathers were unrelated. Furthermore, inbreeding was absent, and no conclusive evidence was found for reproductive skew among nest-mate queens. Finally, the number of queens per colony appeared more stable between years, although queen turnover occurred also in this population. The observed differences in dispersal and mating behaviour are discussed in the light of a potential connection between population age and habitat saturation.  相似文献   

8.
The occurrence of multiple reproductives within an ant colony changes the balance between indirect fitness benefits and reproductive competition. We test whether the number of matings by an ant queen (polyandry) correlates negatively with the number of reproductive queens in the colony (polygyny), whether the patrilines and matrilines differ in their contribution to the sexual and worker progeny and whether there is an overall reproductive skew. For these aims, we genotyped both worker and sexual offspring from colonies of the ant Formica sanguinea in three populations. Most colonies were monogynous, but eight (11%) were polygynous with closely related queens. Most queens in the monogynous colonies (86%) had mated with multiple males. The effective paternity was lower than the actual number of mates, and the paternity skew was significant. Furthermore, in some monogynous colonies, the patrilines were differently represented in the worker pupae and sexual pupae produced at the same time. Likewise, the matrilines in polygynous colonies were differently present in worker pupae and male offspring. The effective number of matings by a queen was significantly lower in polygynous colonies (mean me = 1.68) than in monogynous colonies (means 2.06–2.61). The results give support to the hypotheses that polyandry and polygyny are alternative breeding strategies and that reproductive competition can lead to different representation of patrilines and matrilines among the sexual and worker broods.  相似文献   

9.
The efficiency of social groups is generally optimized by a division of labour, achieved through behavioural or morphological diversity of members. In social insects, colonies may increase the morphological diversity of workers by recruiting standing genetic variance for size and shape via multiply mated queens (polyandry) or multiple‐breeding queens (polygyny). However, greater worker diversity in multi‐lineage species may also have evolved due to mutual worker policing if there is worker reproduction. Such policing reduces the pressure on workers to maintain reproductive morphologies, allowing the evolution of greater developmental plasticity and the maintenance of more genetic variance for worker size and shape in populations. Pheidole ants vary greatly in the diversity of worker castes. Also, their workers lack ovaries and are thus invariably sterile regardless of the queen mating frequency and numbers of queens per colony. This allowed us to perform an across‐species study examining the genetic effects of recruiting more patrilines on the developmental diversity of workers in the absence of confounding effects from worker policing. Using highly variable microsatellite markers, we found that the effective mating frequency of the soldier‐polymorphic P. rhea (avg. meN = 2.65) was significantly higher than that of the dimorphic P. spadonia (avg. meN = 1.06), despite a significant paternity skew in P. rhea (avg. B = 0.10). Our findings support the idea that mating strategies of queens may co‐evolve with selection to increase the diversity of workers. We also detected patriline bias in the production of different worker sizes, which provides direct evidence for a genetic component to worker polymorphism.  相似文献   

10.
The partitioning of reproduction among individuals in communally breeding animals varies greatly among species, from the monopolization of reproduction (high reproductive skew) to similar contribution to the offspring in others (low skew). Reproductive skew models explain how relatedness or ecological constraints affect the magnitude of reproductive skew. They typically assume that individuals are capable of flexibly reacting to social and environmental changes. Most models predict a decrease of skew when benefits of staying in the group are reduced. In the ant Leptothorax acervorum, queens in colonies from marginal habitats form dominance hierarchies and only the top‐ranking queen lays eggs (“functional monogyny”). In contrast, queens in colonies from extended coniferous forests throughout the Palaearctic rarely interact aggressively and all lay eggs (“polygyny”). An experimental increase of queen:worker ratios in colonies from low‐skew populations elicits queen–queen aggression similar to that in functionally monogynous populations. Here, we show that this manipulation also results in increased reproductive inequalities among queens. Queens from natural overwintering colonies differed in the number of developing oocytes in their ovaries. These differences were greatly augmented in queens from colonies with increased queen:worker ratios relative to colonies with a low queen:worker ratio. As assumed by models of reproductive skew, L. acervorum colonies thus appear to be capable of flexibly adjusting reproductive skew to social conditions, yet in the opposite way than predicted by most models.  相似文献   

11.
Polyandry by social hymenopteran queens leads to a potential worker reproductive strategy of rearing full-sister queens in preference to half-sister queens. If there is no cost to discrimination, discriminatory queen rearing will be the ESS. However, if discrimination has a cost this conclusion is weakened. This study examines the effect of a “worker efficiency cost” (i.e. discriminatory, nepotistic workers are less effective than non-nepotistic workers in working to increase total colony reproductive output) on the invasion of rare “nepotist” and “non-nepotist” alleles in a population in which the other allele is near fixation. Efficiency costs are considered of special relevance to species with swarm founded colonies (e.g., army ants, honey bees). Two analyses are presented: 1) A general model exploring the effects of efficiency costs, the queen-rearing-biasing ability of nepotists, and queen mating frequency on invasion of nepotists and non-nepotists; 2) a discriminatory removal model, in which the actual amount of biasing is dependent on recognition abilities and the discriminatory intensity of nepotists, queen mating frequency, and whether or not removed immature queens are replaced. The results of the removal model indicate that when queen mating frequency is close to one (i.e., because of double mating with unequal sperm use or mixed double and single mating) non-nepotist is likely to be the ESS. At a higher mating frequency nepotist will become the ESS. At even higher mating frequencies, non-nepotist may reinvade. This latter conclusion is robust across all models. In particular, non-nepotists may reinvade at the high mating frequencies found in the honey bee (10–20) if their work efficiency is only a few percent higher than nepotists (the exact amount depends on recognition errors and the intensity of discrimination), resulting in a genetic polymorphism of both nepotists and non-nepotists. Results of a recent study of patriline discrimination in honey bees (Page et al., 1989) are consistent with such a polymorphism.  相似文献   

12.
Considerable attention has focused on why females of many species mate with several males. For social hymenopteran insects, efforts have primarily concentrated on determining whether multiple mating increases colony performance due to the increased genetic diversity. Most of these studies are correlative because it is difficult or impossible to experimentally mate queens in most species. Thus, the positive associations found between multiple paternity and colony fitness in some cases may not be due to direct effects of genetic diversity but could, in theory, arise from high-quality queens having more mates. Here we show that in the ant Lasius niger variation in the number of matings covaries with queen phenotype. Young queens that were heavier at the time of the mating flight were significantly more likely to mate with several males. As a result, heavier queens stored more sperm. The initial weight of queens was significantly associated with the probability of surviving mating flights during the two years of the study, with queens of intermediate weight having the highest across-year survival. Queen initial weight was also significantly and positively associated with the quantity of brood at the time of the first worker eclosion as well as colony productivity at the time of hibernation. By contrast, there was little evidence for a positive effect of the number of matings on colony performance when the effect of mate number and queen initial weight were considered simultaneously.  相似文献   

13.
We tested the impact of colony density and climatic conditions on the level of queen polyandry in different wild populations of the honeybee (Apis mellifera jemenitica). We identified the mating frequency of queens by genotyping worker offspring (n = 672) of 28 wild colonies with microsatellite DNA markers. The populations sampled in different climatic regions in Sudan showed a high variance for the queen mating frequency ranging from 9 to 23 estimated matings with an average of 14.00 ± 3.94 (13.16 ± 4.87 effective matings). The degree of polyandry was highly significantly correlated with the rainfall in the various regions. In general, more rainfall resulted in lower mating frequencies. Polyandry did not correlate with colony density or with genetic diversity of the local sample populations. This suggests that variation in polyandry in wild honeybee populations of Sudan is primarily driven by climatic differences among ecosystem variation rather than by the absolute or effective local honeybee population size.  相似文献   

14.
Relatedness and genetic variability in colonies of social insects are strongly influenced by the number of queens present and the number of matings per queen, but also by the genetic variability in the population. Thus, multiple paternity will enhance within-colony genetic variability more strongly when the males a queen mates with are unrelated. To study the kin-structure within colonies of the leaf-cutter ant Atta colombica and the population structure of this species around Barro Colorado Island, Panama, we developed five polymorphic microsatellite loci with a range of three to 17 alleles in At. colombica, all of which cross-amplify in other higher attines as well. The average effective mating frequency calculated from four-locus microsatellite genotypes was 1.89 ± 0.12 (harmonic mean ± SE) and thus slightly lower than the average observed mating frequency of 2.50 ± 0.11 (arithmetic mean ± SE) over the 55 colonies studied, confirming former studies that utilized fewer loci. The discrepancy between observed mating frequency and effective mating frequency is most probably due to paternity skew within colonies. The study population proved to be genetically diverse and in Hardy-Weinberg equilibrium, suggesting random mating within the study area. No population substructure was observed, neither considering nuclear (global F ST = 0.011 ± 0.003 SE) nor mitochondrial markers (mean ΦST = 0.008). Consequently, gene flow is obviously promoted by both sexes across the range investigated here. Thus, multiple mating and long-distance dispersal appear to be two interconnected behavioural mechanisms to create and maintain genetic diversity in At. colombica. The advantages of this system are partly offset by paternity skew and the non-zero relatedness among colony fathers found in the study population. Received 18 March 2008; revised 14 July 2008; accepted 18 July 2008.  相似文献   

15.
Gnamptogenys striatula is a polygynous ponerine ant, whose colonies contain either several differentiated queens or several gamergates. Population structure, queen mating frequency and deviation from random mating were investigated in a north-eastern Brazilian population. Eight workers from each of 33 queenright colonies and 17 queens and their progeny (20-40 offspring) were genotyped using eight variable microsatellite markers. Population differentiation tests indicated limited gene flow at the scale of several kilometres, and tests of isolation by distance revealed population viscosity at the scale of a few metres. This population structure, together with the frequent colony migrations and fissions observed in the field, suggest that new nests are founded by budding in G. striatula. Genetic data showed that 13 of our 17 queens were single-mated and four were double-mated. The estimation of the range of maximal frequency of double-mated queens in the population was 0.232-0.259, demonstrating that mating frequency is low in G. striatula. The low estimated mean relatedness between the 17 queens and their mates (-0. 04 +/- 0.49) indicated no evidence of inbreeding in G. striatula.  相似文献   

16.
Monogamy results in high genetic relatedness among offspring and thus it is generally assumed to be favored by kin selection. Female multiple mating (polyandry) has nevertheless evolved several times in the social Hymenoptera (ants, bees, and wasps), and a substantial amount of work has been conducted to understand its costs and benefits. Relatedness and inclusive fitness benefits are, however, not only influenced by queen mating frequency but also by paternity skew, which is a quantitative measure of paternity biases among the offspring of polyandrous females. We performed a large‐scale phylogenetic analysis of paternity skew across polyandrous social Hymenoptera. We found a general and significant negative association between paternity frequency and paternity skew. High paternity skew, which increases relatedness among colony members and thus maximizes inclusive fitness gains, characterized species with low paternity frequency. However, species with highly polyandrous queens had low paternity skew, with paternity equalized among potential sires. Equal paternity shares among fathers are expected to maximize fitness benefits derived from genetic diversity among offspring. We discuss the potential for postcopulatory sexual selection to influence patterns of paternity in social insects, and suggest that sexual selection may have played a key, yet overlooked role in social evolution.  相似文献   

17.
Suni SS  Gignoux C  Gordon DM 《Molecular ecology》2007,16(24):5149-5155
We investigated the extent to which workers reproduce in a dependent-lineage population of the monogynous harvester ant Pogonomyrmex barbatus. Dependent-lineage populations contain two interbreeding, yet genetically distinct mitochondrial lineages, each associated with specific alleles at nuclear loci. Workers develop from matings between lineages, and queens develop from matings within lineages, so queens must mate with males of both lineages to produce daughter queens and workers. Males develop from unfertilized eggs and are haploid. Worker production of males could lead to male-mediated gene flow between the lineages if worker-produced males were reproductively capable. This could result in the loss of the dependent-lineage system, because its persistence depends on the maintenance of allelic differences between the lineages. To investigate the extent of worker reproduction in P. barbatus, we genotyped 19-20 males and workers from seven colonies, at seven microsatellite loci, and 1239 additional males at two microsatellite loci. Our methods were powerful enough to detect worker reproduction if workers produced more than 0.39% of males in the population. We detected no worker-produced males; all males appeared to be produced by queens. Thus, worker reproduction is sufficiently infrequent to have little impact on the dependent-lineage system. These results are consistent with predictions based on inclusive fitness theory because the effective queen mating frequency calculated from worker genotypes was 4.26, which is sufficiently high for workers to police those that attempt to reproduce.  相似文献   

18.
Paxton  R. J. 《Insectes Sociaux》2000,47(1):63-69
Summary: Stingless bee queens have for long been assumed to mate once on a nuptial flight, early in life. To evaluate critically monandry in one stingless bee, Scaptotrigona postica, worker offspring (adults or brood) were genetically analysed with microsatellite loci, five of which were developed specifically for the species. Marker loci were highly variable; unbiased estimates of heterozygosity were > 0.5. "Foreign" workers, either those having drifted from other colonies (circa 2%) or those of a replacement queen, were identified with the genetic markers and removed from further analysis. Worker genotypes were consistent with some queens having mated once and others having mated with up to six different males. Scaptotrigona postica queens are therefore facultatively polyandrous. Effective mating frequencies, me, were generally lower than the number of patrilines observed. Relatedness estimates of nestmates from individual colonies concurred with those derived from direct counts of the number of patrilines and their proportional representation. Putative genotypes of a colony's queen and her mates were deduced from those of her workers. Queens were generally not related to their mates. For one polyandrous queen, her six mates were related to each other, possibly because of numerically biased representation of males from different colonies at mating sites. However, males at an aggregation outside a colony came from numerous colonies.  相似文献   

19.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

20.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号