首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel heparanase-inhibiting antibody reduces neointima formation   总被引:3,自引:0,他引:3  
Basic fibroblast growth factor (bFGF), stored bound to heparan sulfate proteoglycans in the extracellular matrix (ECM) of the arterial media, may initiate smooth muscle cell (SMC) proliferation after coronary intervention, thus contributing to restenosis. bFGF mobilization from ECM stores after injury may be induced by platelet degranulation products such as heparanase. Therapies aimed at the inhibition of bFGF release and activation may assist in prevention of restenosis. To test this theory, we first examined the mobilization and activation of bFGF in the arterial media by platelet-derived heparanase. Heparanase, locally delivered to the rat carotid artery, was found to release bFGF and induce substantial SMC proliferation in the absence of actual vascular injury. An antibody that neutralizes heparanase was then developed and evaluated in a rat carotid balloon injury model. Local delivery of anti-heparanase IgG was found to inhibit bFGF release by approximately 60% ( p < 0.001) at 4 d; this correlated with the significant reduction in neointima formation observed at 14 d (intimal area/medial area: control 1.3 +/- 0.3, anti-heparanase 0.35 +/- 0.12, p < 0.0001). Platelet-derived heparanase is therefore likely to be important in initiating events leading to restenosis via bFGF mobilization. Furthermore, heparanase neutralization may assist in the prevention of restenosis following vascular injury.  相似文献   

2.
Basic fibroblast growth factor (bFGF) has been shown to play an instrumental role in the cascade of events leading to restenosis; however, the mechanisms of bFGF activation following vascular injury have remained elusive. We have demonstrated that heparanase and platelet factor-4 (PF4), released from activated platelets at the site of injury, liberate bFGF from the extracellular matrix (ECM) of vascular smooth muscle cells (SMC), resulting in the induction of SMC proliferation and migration. Increases in proliferation and migration were inhibited by treatment with a bFGF-neutralizing antibody, suggesting that proliferation and migration in response to heparanase or PF4 are mediated by bFGF activation. When platelets were seeded on top of SMCs, degranulation products were found to release bFGF from the ECM, increasing cell proliferation and cell migration. Again, these increases in SMC proliferation and migration were inhibited by treatment with an anti-bFGF antibody. Furthermore, these increases in proliferation were completely inhibited by treatment with an anti-heparanase antibody. Platelet degranulation products, such as heparanase and PF4, may liberate bFGF from extracellular sequestration, activating the growth factor and inducing the SMC proliferation and migration that contribute to the wound healing response following vascular injury.  相似文献   

3.
Incubation of platelets, neutrophils, and lymphoma cells with Descemet's membranes of bovine corneas and with the extracellular matrix (ECM) produced by cultured corneal endothelial cells resulted in release of basic fibroblast growth factor (bFGF), which stimulated the proliferation of 3T3 fibroblasts and vascular endothelial cells. Similar requirements were observed for release of endogenous bFGF stored in Descemet's membrane and of exogenous bFGF sequestered by the subendothelial ECM. Release of ECM-resident bFGF by platelets, neutrophils, and lymphoma cells was inhibited by carrageenan lambda, but not by protease inhibitors, in correlation with the inhibition of heparanase activity expressed by these cells. Degradation of the ECM-heparan sulfate side chains by this endo-beta-D-glucuronidase is thought to play an important role in cell invasion, particularly in the extravasation of blood-borne tumor cells and activated cells of the immune system. We propose that both heparanase and ECM-resident bFGF may modulate the cell response to contact with its local environment. Heparanase-mediated release of active bFGF from storage in basement membranes provides a novel mechanism for a localized induction of neovascularization in various normal and pathological processes, such as wound healing, inflammation, and tumor development.  相似文献   

4.
There is increasing evidence that extracellular matrix (ECM)-degrading proteinases contribute to the process of medial hypertrophy and neointimal proliferation in pulmonary vascular diseases. However, little is known about how proteinases, specifically elastases, induce vascular smooth muscle cell (SMC) hyperplasia. Our objective was to determine whether exogenous human leukocyte elastase (HLE), as well as endogenous vascular elastase, could release basic fibroblast growth factor (bFGF), a potent mitogen stored in the ECM surrounding SMCs. Cultured ovine and porcine pulmonary artery SMC were pre-incubated with [125I]-bFGF. After removal of unbound [125I]-bFGF, administration of HLE (0–1.0 μg/ml, 1 h) resulted in a concentration-dependent accumulation of [125I]-bFGF in the conditioned medium, mirrored by depletion from the ECM. The serine elastase inhibitor elafin blocked this HLE-mediated action. Assessment by Western immunoblotting further demonstrated that HLE evoked the release of ECM-bound endogenous bFGF. When incubated with serum-starved SMC, conditioned medium from HLE-treated cells stimulated [3H]-thymidine incorporation, a feature neutralized by bFGF antibodies. In addition, SMC exposed to serum treated elastin (STE), previously shown to stimulate endogenous vascular elastase, liberated bioavailable bFGF from ECM stores, as determined by autoradiography, Western immunoblotting, and stimulation of DNA synthesis and SMC proliferation. Chondroitin sulfate, an inhibitor of STE-induced elastase activity, attenuated the release of bFGF. Our studies demonstrate that HLE, secreted by inflammatory cells, and endogenous vascular elastase release matrix-bound bFGF, suggesting a mechanism whereby elastases, through degradation of ECM, induce SMC proliferation associated with progressive vascular disease. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Despite the ubiquitous presence of basic fibroblast growth factor (bFGF) in normal tissues, endothelial cell proliferation in these tissues is usually very low, suggesting that bFGF is somehow sequestered from its site of action. Immunohistochemical staining revealed the localization of bFGF in basement membranes of diverse tissues, suggesting that the extracellular matrix (ECM) may serve as a reservoir for bFGF. Moreover, functional studies indicated that bFGF is an ECM component required for supporting endothelial cell proliferation and neuronal differentiation. We have found that bFGF is bound to heparan sulfate (HS) in the ECM and is released in an active form when the ECM-HS is degraded by heparanase expressed by normal and malignant cells (i.e. platelets, neutrophils, lymphoma cells). It is proposed that restriction of bFGF bioavailability by binding to ECM and local regulation of its release provide a novel mechanism for neovascularization in normal and pathological situations. The subendothelial ECM contains also tissue type- and urokinase type-plasminogen activators which participate in cell invasion and tissue remodeling. These results and studies on the properties of other ECM-immobilized enzymes (i.e. thrombin, plasmin, lipoprotein lipase) and growth factors (GM-CSF, IL-3, osteogenin), suggest that the ECM provides a storage depot for biologically active molecules which are thereby stabilized and protected. This may allow a more localized and persistent mode of action, as compared to the same molecules in a fluid phase.  相似文献   

6.
The activity of acidic and basic fibroblast growth factor-like mitogens (aFGF, bFGF) extracted from cultured bovine aortic endothelial (BAEC) and rat aortic smooth muscle cells (SMC) was compared with that of freshly isolated cells from the same tissues. Extracts of subendothelial extracellular matrix (ECM) and cell lysates of cultured BAEC contained 4-fold more bFGF-like activity than the extracts of fresh cells. ECM and cell lysates of SMC yielded 10-fold more bFGF-like activity than the fresh cell lysates. We consistently find aFGF-like activity in both cell types. In the case of BAEC, cultured cells and ECM contained 3-fold more aFGF-like activity when compared with freshly isolated cells, whereas in cultured SMC, aFGF-like activity in cell and ECM extracts was 8-fold higher than in fresh cell extracts. The mitogens extracted from cell lysates and from the ECM are closely related to aFGF or bFGF by the criteria that they bind to heparin-sepharose and elute at 1.1 M (aFGF) or 1.5 M (bFGF) NaCl, have molecular weights of about 18,000, and react with anti-aFGF (1.1 M), or anti-bFGF (1.5 M) antibodies when analyzed by Western blots and by radioimmunoassay specific for aFGF and bFGF. This mitogenic activity is inhibited by neutralizing antibodies to aFGF and bFGF. In addition, the column fractions are potent mitogens for Balb/c 3T3 fibroblasts. Acidic and basic FGF-like mitogenic activity could also be extracted from the cell nuclei. The subcellular localization of both FGFs was visualized in both nuclei and cytoplasm with immunoperoxidase. Compared with primary SMC, secondary SMC had an increased capacity to bind 125IaFGF to high affinity receptors, while binding to freshly isolated BAEC and SMC was negligible. We conclude that FGFs are present at low levels in freshly isolated cells and that propagation in cell culture provides a stimulus for production of these mitogens.  相似文献   

7.
Heparanase is an endo-beta-glucuronidase that cleaves heparan sulfate (HS) chains of heparan sulfate proteoglycans on cell surfaces and in the extracellular matrix (ECM). Heparanase, overexpressed by most cancer cells, facilitates extravasation of blood-borne tumor cells and causes release of growth factors sequestered by HS chains, thus accelerating tumor growth and metastasis. Inhibition of heparanase with HS mimics is a promising target for a novel strategy in cancer therapy. In this study, in vitro inhibition of recombinant heparanase was determined for heparin derivatives differing in degrees of 2-O- and 6-O-sulfation, N-acetylation, and glycol splitting of nonsulfated uronic acid residues. The contemporaneous presence of sulfate groups at O-2 of IdoA and at O-6 of GlcN was found to be non-essential for effective inhibition of heparanase activity provided that one of the two positions retains a high degree of sulfation. N-Desulfation/ N-acetylation involved a marked decrease in the inhibitory activity for degrees of N-acetylation higher than 50%, suggesting that at least one NSO3 group per disaccharide unit is involved in interaction with the enzyme. On the other hand, glycol splitting of preexisting or of both preexisting and chemically generated nonsulfated uronic acids dramatically increased the heparanase-inhibiting activity irrespective of the degree of N-acetylation. Indeed N-acetylated heparins in their glycol-split forms inhibited heparanase as effectively as the corresponding N-sulfated derivatives. Whereas heparin and N-acetylheparins containing unmodified D-glucuronic acid residues inhibited heparanase by acting, at least in part, as substrates, their glycol-split derivatives were no more susceptible to cleavage by heparanase. Glycol-split N-acetylheparins did not release basic fibroblast growth factor from ECM and failed to stimulate its mitogenic activity. The combination of high inhibition of heparanase and low release/potentiation of ECM-bound growth factor indicates that N-acetylated, glycol-split heparins are potential antiangiogenic and antimetastatic agents that are more effective than their counterparts with unmodified backbones.  相似文献   

8.
The plant phenolic compounds such as flavonoids, tannins and phenolic acids appeared to be strong antiradical and antioxidant compounds. The number of hydroxy groups and the presence of a 2,3-double bond and orthodiphenolic structure enhance antiradical and antioxidative activity of flavonoids. The glycosylation, blocking the 3-OH group in C-ring, lack of a hydroxy group or the presence of only a methoxy group in B-ring have a decreasing effect on antiradical or antioxidative activity of these compounds. Tannins show strong antioxidative properties. Some tannins in red wine or gallate esters were proved to have antioxidative effect in vivo. The number of hydroxy groups connected with the aromatic ring, in ortho or para position relative to each other, enhance antioxidative and antiradical activity of phenolic acids. The substitution of a methoxy group in ortho position to the OH in monophenols seems to favour the antioxidative activity of the former.  相似文献   

9.
Vitamin B(12), reduced by titanium (III) citrate to vitamin B(12s), catalyzes the reductive dechlorination of chlorophenols. Reductive dechlorination of pentachlorophenol and of all tetrachlorophenol and trichlorophenol isomers was observed. Reaction of various chlorophenols with vitamin B(12) favored reductive dechlorination at positions adjacent to another chlorinated carbon, but chlorines ortho to the hydroxyl group of a phenol were particularly resistant to reductive dechlorination, even if they were also ortho to a chlorine. This resulted in a reductive dechlorination pattern favoring removal of para and meta chlorines, which differs substantially from the pattern exhibited by anaerobic microbial consortia.  相似文献   

10.
We have characterized the importance of size, sulfation, and anticoagulant activity of heparin in release of basic fibroblast growth factor (bFGF) from the subendothelial extracellular matrix (ECM) and the luminal surface of the vascular endothelium. For this purpose, 125I-bFGF was first incubated with ECM and confluent endothelial cell cultures, or administered as a bolus into the blood of rats, the immobilized 125I-bFGF was then subjected to release by various chemically modified species of heparin and size-homogeneous oligosaccharides derived from depolymerized heparin. Both totally desulfated and N-desulfated heparin failed to release the ECM-bound bFGF. Likewise, substitution of N-sulfate groups of heparin and low molecular weight heparin (fragmin) by acetyl or hexanoyl residues resulted in an almost complete inhibition of bFGF release by these polysaccharides. The presence of O-sulfate groups in heparin increased but was not critical for release of ECM-bound bFGF. Similar structural requirements were identified for release of 125I-bFGF bound to low-affinity sites on the surface of vascular endothelial cells. Oligosaccharides derived from depolymerized heparin and containing as little as 8-10 sugar units were, on a weight basis, equivalent to whole heparin in their ability to release bFGF from ECM. Low-sulfate oligosaccharides were less effective releasers of bFGF as compared to medium- and high-sulfate fractions of the same size oligosaccharides. Heparin fractions with high and low affinity to antithrombin III exhibited a similar high bFGF-releasing activity despite a 200-fold difference in their anticoagulant activities.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of plasminogen on the ability of highly metastatic ESb mouse lymphoma cells to degrade heparan sulfate (HS) in the subendothelial extracellular matrix (ECM) was studied. A metabolically sulfate-labeled ECM was incubated with the lymphoma cells, and labeled degradation products were analyzed by gel filtration on Sepharose 6B. Heparanase-mediated release of low-Mr (0.5 less than Kav less than 0.85) HS cleavage products was stimulated fourfold in the presence of plasminogen. Incubation of plasminogen alone with the ECM resulted in its conversion into plasmin, which released high-Mr (Kav less than 0.33) labeled proteoglycans from the ECM. Heating the ECM (80 degrees C, 1 hr) abolished its ability to convert plasminogen into plasmin, yet plasminogen stimulated, through its activation by the ESb plasminogen activator, heparanase-mediated release of low-Mr HS fragments. Heparin inhibited both the basal and plasminogen-stimulated degradation of HS side chains but not the total amount of labeled material released from the ECM. In contrast, aprotinin inhibited the plasminogen-stimulated release of high- as well as low-Mr material. In the absence of plasminogen, degradation of heated ECM by ESb cells was completely inhibited by aprotinin, but there was only a partial inhibition of the degradation of native ECM and no effect on the degradation of soluble HS proteoglycan. These results demonstrate that proteolytic activity and heparanase participate synergistically in the sequential degradation of ECM HS and that the ESb proteolytic activity is crucial for this degradation when the ECM-associated protease is inactivated. Plasminogen may serve as a source for the proteolytic activity that produces a more accessible substrate to the heparanase.  相似文献   

12.
13.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   

14.
Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis.  相似文献   

15.
Deuteration at selected positions on the phenol ring and at the beta-methylene carbon for the YD.tyrosine radical in Photosystem II in the cyanobacterium Synechocystis 6803 was achieved by growing the organism under conditions in which it is a functional aromatic amino acid auxotroph (Barry, B. A., and Babcock, G. T. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 7099-7103). A series of model tyrosine radicals, also deuterated at specific sites on the aromatic ring and the methylene group, was generated by UV irradiation of frozen solutions. The EPR spectra of the specifically deuterated in vivo radicals confirm that YD.is a tyrosine; nevertheless its spectra differ from those of the tyrosine models. By comparing the EPR spectra of the specifically deuterated radicals with those of the fully protonated, the hyperfine couplings of the various protons of both YD.and the model compound radicals were determined. For both species, the unpaired electron spin density distribution is essentially identical and follows an odd-alternant pattern with high rho values at the carbons ortho and para to the tyrosine phenol oxygen; the meta positions have low spin densities. The differences in EPR spectral characteristics for the two radicals are rationalized as arising from variations in the conformation of the beta-methylene group with respect to the phenol head group. Considering these EPR results and those reported for other model and naturally occurring tyrosine radicals, we conclude that this situation is general; there is little deviation in this class of compounds from the odd-alternant spin density distribution; variations in EPR lineshapes arise primarily from variations in beta-methylene orientation. The conformation of the -CH2- group in biologically active tyrosine radicals deviates from that observed in the models and may be functionally significant. Because the EPR spectrum of YZ., the second redox active tyrosine radical in Photosystem II, is identical to that of YD., we conclude that the two radicals are in similar protein environments, a conclusion that is supported by the protein sequences in the vicinity of the two radicals.  相似文献   

16.
17.
We report the photophysical and electrochemical properties of phenol-pyrrolidino[60]fullerenes 1 and 2, in which the phenol hydroxyl group is ortho and para to the pyrrolidino group, respectively, as well as those of a phenyl-pyrrolidino[60]fullerene model compound, 3. For the ortho analog 1, the presence of an intramolecular hydrogen bond is supported by (1)H NMR and FTIR characterization. The redox potential of the phenoxyl radical-phenol couple in this architecture is 240 mV lower than that observed in the associated para compound 2. Further, the C(60) excited-state lifetime of the hydrogen-bonded compound 1 in benzonitrile is 260 ps, while the corresponding lifetime for 2 is identical to that of the model compound 3 at 1.34 ns. Addition of excess organic acid to a benzonitrile solution of 1 gives rise to a new species, 4, with an excited-state lifetime of 1.40 ns. In nonpolar aprotic solvents such as toluene, all three compounds have a C(60) excited-state lifetime of ~1 ns. These results suggest that the presence of an intramolecular H-bond in 1 poises the potential of phenoxyl radical-phenol redox couple at a value that it is thermodynamically capable of reducing the photoexcited fullerene. This is not the case for the para analog 2 nor is it the case for the protonated species 4. This work illustrates that in addition to being used as light activated electron acceptors, pyrrolidino fullerenes are also capable of acting as built-in proton-accepting units that influence the potential of an attached donor when organized in an appropriate molecular design.  相似文献   

18.
Heparin and heparin-like molecules may function, apart from their effect on hemostasis, as regulators of cell growth and neovascularization. We investigated whether similar effects are exerted by laminarin sulfate, an unrelated polysulfated saccharide isolated from the cell wall of seaweed and composed of chemically O-sulfated b?-(1,3)-linked glucose residues. Laminarin sulfate exhibits about 30% of the anticoagulant activity of heparin and is effective therapeutically in the prevention and treatment of cerebrovascular diseases. We characterized the effect of laminarin sulfate on interaction of the heparin-binding angiogenic factor, basic fibroblast growth factor (bFGF), with a naturally produced subendothelial extracellular matrix (ECM) and with cell surface receptor sites. Laminarin sulfate (1-2 m?g/ml) inhibited the binding of bFGF to ECM and to the surface of vascular smooth muscle cells (SMC) in a manner similar to that observed with heparin. Likewise, laminarin sulfate efficiently displaced both ECM-and cell-bound bFGF at concentrations as low as 1 m?g/ml. Both laminarin sulfate and heparin efficiently induced restoration of bFGF receptor binding in xylosyltransferase-deficient CHO cell mutants defective in initiation of glycosaminoglycan synthesis. Moreover, laminarin sulfate elicited bFGF receptor activation and mitogenic response in heparan sulfate(HS)-deficient, cytokine-dependent lymphoid cells. These results indicate that laminarin sulfate effectively replaced the need for heparin and HS in the induction of bFGF receptor binding and signaling. In other experiments, laminarin sulfate was found to inhibit the proliferation of vascular SMC in a manner similar to that observed with heparin. These effects of laminarin sulfate may have potential clinical applications in diverse situations such as wound healing, angiogenesis, and atherosclerosis. © 1995 Wiley-Liss, Inc.  相似文献   

19.
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号