首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The Lactobacillus plantarum strains VTT E-78076 (E76) and VTT E-79098 (E98) were studied for their antifungal potential against Fusarium species. METHODS AND RESULTS: In vitro screening with automated turbidometry as well as direct and indirect impedimetric methods clearly showed Lact. plantarum cell-free extracts to be effective against Fusarium species including Fusarium avenaceum, F. culmorum, F. graminearum and F.oxysporum. However, great variation in growth inhibition was observed between different Fusarium species and even between strains. The antifungal potential of Lact. plantarum E76 culture, including cells and spent medium, was also examined in laboratory-scale malting with naturally contaminated two-rowed barley from the crops of 1990-96. The growth of the indigenous Fusarium flora was restricted by the addition of Lact. plantarum E76 to the steeping water. However, the antifungal effect was greatly dependent on the contamination level and the fungal species/strains present on barley in different years. CONCLUSIONS: Lactobacillus plantarum strains E76 and E98 had a fungistatic effect against different plant pathogenic, toxigenic and gushing-active Fusarium fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study indicates that Lact. plantarum strains with known and selected characteristics could be used as a natural, food-grade biocontrol agent for management of problems caused by Fusarium fungi during germination of cereals.  相似文献   

2.
New types of antimicrobial compounds produced by Lactobacillus plantarum   总被引:3,自引:0,他引:3  
New types of antimicrobial compounds were identified in the culture filtrate of Lactobacillus plantarum VTT E-78076. Activity was detected in the low molecular mass fraction separated by gel chromatography. This fraction totally inhibited the growth of the Gram-negative test organism, Pantoea agglomerans (Enterobacter agglomerans) VTT E-90396. Characteristic compounds from this fraction were identified by GC/MS-analysis and the identification was confirmed using pure commercial reference compounds in identical chromatographs and in antimicrobial tests. The active fraction included benzoic acid (CAS 65-85-0), 5-methyl-2,4-imidazolidinedione (CAS 616-03-5, methylhydantoin), tetrahydro-4-hydroxy-4-methyl-2H- pyran-2-one (CAS 674-26-0, mevalonolactone) and 3-(2-methylpropyl)-2,5-piperazinedione (CAS 5845-67-0, cyclo(glycyl-L-leucyl)). These compounds in concentrations of 10 ppm inhibited growth of the test organism by 10-15% when acting separately, but 100% when all were applied together with 1% lactic acid. The inhibition was 40% by 1% lactic acid alone. The compounds were also active against Fusarium avenaceum (Gibberella avenacea) VTT-D-80147. The inhibition was 10-15% by separate compounds in concentrations of 10 ppm and maximally 20% in combinations. Fungal growth was not inhibited by lactic acid. Inhibition by unfractionated Lact. plantarum culture filtrate was 37% and by the low molecular mass fraction, 27%.  相似文献   

3.
Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755   总被引:6,自引:0,他引:6  
Phytase enzymes can increase the nutritional value of food and feed by liberating inorganic phosphate from phytate, the major storage form of phosphorus in plants. The phytase (phyC) from Bacillus subtilis VTT E-68013 was expressed in Lactobacillus plantarum strain 755 using Lact. amylovorus alpha-amylase secretion signals. In an overnight cultivation in MRS medium containing cellobiose for induction of the alpha-amylase promoter, catalytically active phytase was secreted as a predominant extracellular protein. However, Western blot analysis revealed unprocessed and processed phytase in the cell fraction. Pulse chase experiments showed that the recombinant phytase was secreted at a slower rate in comparison to the native proteins of Lact. plantarum 755.  相似文献   

4.
AIMS: The aim of this research was to investigate the potential of Lactobacillus plantarum strain SK1 for use as a biological control agent against Listeria monocytogenes and determine its mechanism of anti-listerial activity. METHODS AND RESULTS: Co-growth of Lact. plantarum SK1 and L. monocytogenes UMCC98 in MRS broth showed that anti-listerial activity of Lact. plantarum SK1 occurred during late log/early stationary phase of growth. This coincided with a reduction in broth pH to 4.26. Evidence obtained from the analysis of cell-free culture filtrates of strain SK1 grown in MRS broth using thin-layer chromatography and growth of L. monocytogenes in pH-adjusted culture filtrates suggested that the anti-listerial activity was due to lactic acid production alone. Trials of Lact. plantarum SK1 on radishes stored at 5 degrees C showed that it had statistically significant (P < 0.05) anti-listerial activity. CONCLUSIONS: The anti-listerial activity of Lact. plantarum SK1 was due to lactic acid production alone. A small-scale trial on radishes stored at 5 degrees C showed it to have significant anti-listerial activity in planta. SIGNIFICANCE AND IMPACT OF THE STUDY: This organism has potential as a biological control agent for L. monocytogenes.  相似文献   

5.
Lactobacillus helveticus 1829 produced an antimicrobial agent, designated helveticin V-1829, that demonstrated antagonistic activity against closely-related species. The agent was excreted into MRS agar, and was present in the supernatant fluids from both overnight broth and clotted milk cultures. It was heat labile (inactivated by 50 degrees C for 30 min) and was stable over the pH range 2.5 to 6.5. Production of the substance was pH-dependent and maximum yields were obtained in MRS broth cultures maintained at pH 5.5. Helveticin V-1829 was partially purified following growth of the producing strain in a semi-defined MRS medium and precipitating the cell-free filtrate with ammonium sulphate to 30% saturation. The cleared supernatant fluid was then brought to 60% saturation and the resulting precipitate pelleted and dialysed in 0.3 mol/l phosphate buffer. The partially purified inhibitor was sensitive to several proteolytic enzymes, and it was bactericidal in its mode of action against indicator cells of Lact. helveticus 1844 and Lact. delbrueckii subsp. bulgaricus 1489, indicating that it was a bacteriocin. A DNA probe specific for the helveticin J structural gene failed to hybridize to total genomic DNA of Lact. helveticus 1829, indicating that helveticin V-1829 is not significantly related to helveticin J.  相似文献   

6.
Lactobacillus helveticus 1829 produced an antimicrobial agent, designated helveticin V-1829, that demonstrated antagonistic activity against closely-related species. The agent was excreted into MRS agar, and was present in the supernatant fluids from both overnight broth and clotted milk cultures. It was heat labile (inactivated by 50°C for 30 min) and was stable over the pH range 2.5 to 6.5. Production of the substance was pH-dependent and maximum yields were obtained in MRS broth cultures maintained at pH 5.5. Helveticin V-1829 was partially purified following growth of the producing strain in a semi-defined MRS medium and precipitating the cell-free filtrate with ammonium sulphate to 30% saturation. The cleared supernatant fluid was then brought to 60% saturation and the resulting precipitate pelleted and dialysed in 0.3 mol/l phosphate buffer. The partially purified inhibitor was sensitive to several proteolytic enzymes, and it was bactericidal in its mode of action against indicator cells of Lact. helveticus 1844 and Lact. delbrueckii subsp. bulgaricus 1489, indicating that it was a bacteriocin. A DNA probe specific for the helveticin J structural gene failed to hybridize to total genomic DNA of Lact. helveticus 1829, indicating that helveticin V-1829 is not significantly related to helveticin J.  相似文献   

7.
AIMS: To compare growth of Lactobacillus plantarum on media containing hydrolysates (peptones) from cod viscera with growth on commercial media. METHODS AND RESULTS: Growth of Lact. plantarum on various fish peptones and commercial peptones/extracts was evaluated using both a Bioscreen apparatus (microtiter plates, no pH control) and fermentors (with pH control). Generally, the performance of the fish peptones was good and only beaten by the performance of yeast extract. Replacement of the 22 g l(-1) complex nitrogen source in standard MRS medium with only 5 g l(-1) fish peptone reduced the biomass yield with only 10%, whereas replacement with a mixture of 2.5 g l(-1) fish peptone and 2.5 g l(-1) yeast extract increased the biomass yield by 10%. CONCLUSIONS: Peptones derived from cod viscera support excellent growth of Lact. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: We show that peptones derived from cod viscera are promising constituents of growth media for fastidious food bacteria such as lactobacilli. Media containing these peptones show excellent performance while problems associated with the use of meat-derived peptones (BSE, kosher status) or plant-derived peptones (genetically modified organisms) are avoided.  相似文献   

8.
Forty-two lactic acid bacteria (LAB) of the genera Lactobacillus (32), Leuconostoc (6), Pediococcus (3) and Lactococcus (1), isolated from Rioja red wines, were tested for antimicrobial activity. All these strains, as well as 18 Leuconostoc oenos and 19 yeast strains were used as indicators. Only nine strains showed antimicrobial activity, and all were of the species Lactobacillus plantarum, which constitutes the predominant microflora in Rioja red wines after alcoholic fermentation. Lact. plantarum strain J-51 showed the widest range of action, inhibiting the growth of 31 strains of the four studied LAB genera. Lact. plantarum J-51 antimicrobial activity was lost after treatment with proteases, suggesting a proteinaceous nature for this activity. It was found to be stable between pH 3 and 9 and under strong heating conditions (100 degrees C for 60 min). Polymerase chain reaction (PCR) analysis of Lact. plantarum J-51 genome revealed the presence of the plnA gene that encodes the plantaricin precursor PlnA. A 366-bp fragment was sequenced and showed 95% identity with pln locus of Lact. plantarum C-11. The deduced precursor peptide sequence showed one mutation (Gly7 to Ser7) at the double glycine leader peptide, and the three putative 26-, 23- and 22-residue active peptides remain identical to those of Lact. plantarum C-11. Therefore, antimicrobial peptides constitute a potent adaptation advantage for those strains that dominate in a medium such as wine, and can play an important role in the ecology of wine microflora.  相似文献   

9.
AIMS: To identify strains of Cheddar cheese nonstarter lactobacilli that synthesize succinate from common precursors and characterize the biochemical pathways utilized. METHODS AND RESULTS: Whole cell incubations of Lactobacillus plantarum, Lactobacillus casei, Lactobacillus zeae and Lactobacillus rhamnosus, were used to identify strains that accumulated succinate from citrate, l-lactate, aspartic acid or isocitrate. In vivo 13C-nuclear magnetic resonance spectroscopy (13C-NMR) identified the biochemical pathway involved at pH 7.0, and under conditions more representative of the cheese ripening environment (pH 5.1/4% NaCl/13 degrees C). Enzyme assays on cell-free extracts were used to support the pathway suggested by 13C-NMR. CONCLUSIONS: The Lact. plantarum strains studied synthesize succinate from citrate by the reductive tricarboxylic acid (TCA) cycle at either pH 7.0 or pH 5.1/4% NaCl/13 degrees C. Lactobacillus casei, Lact. zeae and Lact. rhamnosus strains lack one or more enzymatic activities present in this pathway, and do not accumulate succinate from any of the four precursors studied. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of Lact. plantarum strains to milk during cheese manufacture may increase the accumulation of the flavour enhancer succinate.  相似文献   

10.
Aims:  The ability of concentrated supernatants from Lactobacillus plantarum to produce a disruption of plasma membrane in eukaryotic and prokaryotic cells has been examined.
Methods and Results:  A strain of Lact. plantarum (tolerant to acid and bile salts and resistant to several antibiotics) was used. It inhibited the growth of pathogenic Escherichia coli and L. monocytogenes . Supernatants from Lact. plantarum were concentrated by centrifugation. Either E. coli or HL-60 cells (a human promyelocytic cell line) were treated in the presence of the concentrated supernatants. The effect of concentrated supernatants from Lact. plantarum on E. coli growth demonstrated a bacteriostatic activity and a loss of cell viability measured by sytox green staining. Concentrated supernatants were capable of disturbing plasma membrane in E. coli and of promoting a cytotoxic and lyctic action on HL-60 cells and on human erythrocytes, respectively.
Conclusions:  These results suggest that Lact. plantarum release an effective compound responsible for an important effect in the disruption of E. coli plasma membrane and for a cytototoxic activity on promyelocytic leukaemia cells.
Significance and Impact of the Study:  This is the first in vitro study about the antimicrobial and biological activities of concentrated supernatants from Lact. plantarum .  相似文献   

11.
In order to select optimal conditions for the production of dry and active starter cultures it is important to determine the influence of growth conditions on the residual activity of dried bacteria. The influence of medium composition, pH during growth, continuous vs batch reactor and growth phase was studied on the residual activity of Lactobacillus plantarum after drying. The effect of high sodium chloride concentrations during growth on the residual activity of Lact. plantarum after drying was measured. The samples were dried by convection and in a fluidized bed. Bacteria with the highest residual activity after drying were produced in batch or chemostat with pH-controlled growth using enriched or diluted MRS medium. The presence of 1 or 1·25 mol l−1 NaCl during growth resulted in a decreased residual activity after drying. Variations in growth conditions (application of stress) generally did not result in higher residual activities after drying.  相似文献   

12.
Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell‐free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative.

Significance and Impact of the Study

After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens.  相似文献   

13.
AIMS: The overall growth kinetics of four potentially probiotic strains (Lactobacillus fermentum, Lact. reuteri, Lact. acidophilus and Lact. plantarum) cultured in malt, barley and wheat media were investigated. The objectives were to identify the main factors influencing the growth and metabolic activity of each strain in association with the cereal substrate. METHODS AND RESULTS: All fermentations were performed without pH control. A logistic-type equation, which included a growth inhibition term, was used to describe the experimental data. In the malt medium, all strains attained high maximum cell populations (8.10-10.11 log10 cfu ml(-1), depending on the strain), probably due to the availability of maltose, sucrose, glucose, fructose (approx. 15 g l(-1) total fermentable sugars) and free amino nitrogen (approx. 80 mg l(-1)). The consumption of sugars during the exponential phase (10-12 h) resulted in the accumulation of lactic acid (1.06-1.99 g l(-1)) and acetic acid (0.29-0.59 g l(-1)), which progressively decreased the pH of the medium. Each strain demonstrated a specific preference for one or more sugars. Since small amounts of sugars were consumed by the end of the exponential phase (17-43%), the decisive growth-limiting factor was probably the pH, which at that time ranged between 3.40 and 3.77 for all of the strains. Analysis of the metabolic products confirmed the heterofermentative or homofermentative nature of the strains used, except in the case of Lact. acidophilus which demonstrated a shift towards the heterofermentative pathway. All strains produced acetic acid during the exponential phase, which could be attributed to the presence of oxygen. Lactobacillus plantarum, Lact. reuteri and Lact. fermentum continued to consume the remaining sugars and accumulate metabolic products in the medium, probably due to energy requirements for cell viability, while Lact. acidophilus entered directly into the decline phase. In the barley and wheat media all strains, especially Lact. acidophilus and Lact. reuteri, attained lower maximum cell populations (7.20-9.43 log10 cfu ml(-1)) than in the malt medium. This could be attributed to the low sugar content (3-4 g l(-1) total fermentable sugar for each medium) and the low free amino nitrogen concentration (15.3-26.6 mg l(-1)). In all fermentations, the microbial growth ceased at pH values (3.73-4.88, depending on the strain) lower than those observed for malt fermentations, which suggests that substrate deficiency in sugars and free amino nitrogen contributed to growth limitation. CONCLUSIONS: The malt medium supported the growth of all strains more than barley and wheat media due to its chemical composition, while Lact. plantarum and Lact. fermentum appeared to be less fastidious and more resistant to acidic conditions than Lact. acidophilus and Lact. reuteri. SIGNIFICANCE AND IMPACT OF THE STUDY: Cereals are suitable substrates for the growth of potentially probiotic lactic acid bacteria.  相似文献   

14.
Aims:  Characterization and purification of a new bacteriocin produced by Lactobacillus plantarum LP 31 strain, isolated from Argentinian dry-fermented sausage.
Methods and Results:  Lactobacillus plantarum LP 31 strain produces an antimicrobial compound that inhibits the growth of food-borne pathogenic bacteria. It was inactivated by proteolytic enzymes, was stable to heat and catalase and exhibited maximum activity in the pH range from 5·0 to 6·0. Consequently, it was characterized as a bacteriocin. It was purified by RP (reverse-phase) solid-phase extraction, gel filtration chromatography and RP-HPLC. Plantaricin produced by Lact. plantarum LP 31 is a peptide with a molecular weight of 1558·85 Da as determined by Maldi-Tof mass spectrometry and contains 14 amino acid residues. It was shown to have a bactericidal effect against Pseudomonas sp., Staphylococcus aureus , Bacillus cereus and Listeria monocytogenes.
Conclusions:  The bacteriocin produced by Lact. plantarum LP 31 may be considered as a new plantaricin according to its low molecular weight and particular amino acid composition.
Significance and Impact of the Study:  In view of the interesting inhibitory spectrum of this bacteriocin and because of its good technological properties (resistance to heat and activity at acidic pH), this bacteriocin has potential applications as a biopreservative to prevent the growth of food-borne pathogens and food spoilage bacteria in certain food products.  相似文献   

15.
AIM: The aim of this study was to isolate and identify antifungal lactic acid bacteria from fresh vegetables, and evaluate their potential in preventing fungal spoilage of vegetables. METHODS AND RESULTS: Lactic acid bacteria from fresh vegetables were enriched in MRS (de Man Rogosa Sharpe) broth and isolated by plating on MRS agar. All the isolates (359) were screened for activity against Aspergillus flavus of which 10% showed antifungal activity. Potent antifungal isolates were identified by phenotypic characters and confirmed by partial 16S rRNA gene sequencing. These were screened against additional spoilage fungi viz. Fusarium graminearum, Rhizopus stolonifer, Sclerotium oryzae, Rhizoctonia solani, Botrytis cinerea and Sclerotinia minor by overlay method. Most of the isolates inhibited wide range of spoilage fungi. When fresh vegetables were inoculated with either cell suspension (10(4) cells ml(-1)) or cell-free supernatant of Lact. plantarum, followed by application of vegetable spoilage fungi (A. flavus and F. graminearum, R. stolonifer, B. cinerea each with 10(4) conidia ml(-1)) the vegetable spoilage was significantly delayed than control. CONCLUSIONS: Fresh vegetables constitute a good source of lactic acid bacteria with ability to inhibit wide range of spoilage fungi. Such bacteria can be applied to enhance shelf-life of vegetables. In the present study, we report for the first time the antifungal activity of Weissella paramessenteroides and Lact. paracollinoides isolated from fresh vegetables, against wide range of food spoilage fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: Fresh vegetables can be used as a source of antifungal lactic acid bacteria. Their exploitation as biopreservative will help in prolonging shelf-life of fresh vegetables.  相似文献   

16.
DNA probe and PCR-specific reaction for Lactobacillus plantarum   总被引:1,自引:0,他引:1  
A 300 bp DNA fragment of Lactobacillus plantarum isolated by randomly amplified polymorphic DNA (RAPD) analysis was cloned and sequenced. This fragment was tested using a dot-blot DNA hybridization technique for its ability to identify Lact. plantarum strains. This probe hybridized with all Lact. plantarum strains tested and with some strains of Lact. pentosus , albeit more weakly. Two internal primers of this probe were selected (LbPl1 and LbPl2) and polymerase chain reaction (PCR) was carried out. All Lact. plantarum strains tested amplified a 250 bp fragment contrary to the other LAB species tested. This specific PCR for Lact. plantarum was also performed from colonies grown on MRS medium with similar results. These methods enabled the rapid and specific detection and identification of Lact. plantarum .  相似文献   

17.
AIM: Lactobacilli have been reported to have intrinsic resistance to trimethoprim. The susceptibility of lactobacilli to trimethoprim on different media was investigated in order to search for a phenotypic test method that could indicate the presence of acquired resistance genes. METHODS AND RESULTS: Strains of Lactobacillus acidophilus, Lact. paracasei, Lact. rhamnosus and Lact. plantarum were susceptibility tested with E-tests on folic acid casei medium (FACM), MRS and defined medium 1. The effects of addition or removal of nucleosides and thymidine phosphorylase were investigated. E-tests on FACM yielded reproducible minimal inhibitory concentrations (MICs) for trimethoprim but addition of nucleosides was necessary for growth of Lact. acidophilus. MICs for the tested strains were 0.125-0.19, 0.25-3 and 0.064-0.19 microg ml(-1) for Lact. paracasei, Lact. rhamnosus and Lact. plantarum, respectively. With the addition of deoxyuridine and deoxyadenosine to FACM the MICs of Lact. acidophilus were 0.064-1 microg ml(-1). CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacilli do not have intrinsic resistance to trimethoprim. The results show that trimethoprim susceptibility testing of the tested Lactobacillus species is possible and indicate that transferable resistance genes are absent in all the tested strains.  相似文献   

18.
C. LEIFERT AND W.M. WAITES. 1992. When Murashige and Skoog's liquid plant medium was inoculated with 10 different bacterial species in the absence of plants only Bacillus subtilis showed significant growth. The numbers of Lactobacillus plantarum, Pseudomonas maltophilia, Erwinia carotovora and Staphylococcus saprophyticus decreased rapidly and were not detected at 28 d.
Bacillus subtilis, Lact. plantarum, Ps. maltophilia, Erw. carotovora and Staph. saprophyticus grew and persisted in the same medium in the presence of Delphinium plants, while only Lact. plantarum and Erw. carotovora grew and persisted in the presence of Hemerocallis plants.
Hemerocallis plants lowered the pH of media from 5.6 to about 3.9 while Delphinium plants increased it to about 5.9 within 7 d after subculturing on fresh media. The pH drop in Hemerocallis media is thought to prevent the growth and persistence of bacteria such as B. subtilis, Staph. saprophyticus and Ps. maltophilia , which were found to be more sensitive to low pH than Lact. plantarum and Erw. carotovora. Bacterial growth in the medium altered the pH, reduced the plant growth and/or resulted in plant death.  相似文献   

19.
Fructo- (FOS) and galacto-oligosaccharides have been used to promote the growth of probiotics, mainly those from Lactobacillus genus. However, only few reports have evaluated the effect of prebiotics on bacteriocins activity and production. In this work, we characterized the effect of FOS supplementation on the growth, lactic and acetic acids production, and antimicrobial activity of crude extracts obtained from Lactobacillus strains isolated from ensiled corn and molasses. Seven out of 28 isolated Lactobacillus, belonging to Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis, showed antimicrobial activity against Listeria innocua. Among them, the strain L. plantarum LE5 showed antimicrobial activity against Listeria monocytogenes and Enteroccocus faecalis; while the L. plantarum LE27 strain showed antimicrobial effect against L. monocytogenes, E. faecalis, Escherichia coli and Salmonella enteritidis. This antimicrobial activity in most of the cases was obtained only after FOS supplementation. In summary, these results show the feasibility to increase the antimicrobial activity of Lactobacillus bacteriocins by supplementing the growth medium with FOS.  相似文献   

20.
Thirty-two Lactobacillus plantarum strains isolated from Feta cheese throughout ripening were studied for their phenotypic characteristics, protein profile of cell-free extracts, enzyme profiles, plasmid profiles, proteolytic and acidifying abilities and ability to grow at low pH and in the presence of bile. Results showed that some biotechnologically important characteristics, such as acidifying and proteolytic activities, can differ between strains. In addition, different plasmid profiles suggest the presence of different Lact. plantarum strains in Feta cheese throughout ripening. The results suggest the possibility of choosing strains with specific biotechnologically interesting properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号