首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CMY-2 beta-lactamase, a plasmid determined class C cephalosporinase, was shown to be susceptible to inhibition by tazobactam (K(i)=40 microM). The reaction product(s) of CMY-2 beta-lactamase with the beta-lactamase inhibitor tazobactam were analyzed by electrospray ionization/mass spectrometry (ESI/MS) to characterize the prominent intermediates of the inactivation pathway. The ESI/MS determined mass of CMY-2 beta-lactamase was 39851+/-3 Da. After inactivating CMY-2 beta-lactamase with excess tazobactam, a single species, M(r)=39931+/-3.0, was detected. Comparison of the peptide maps from tryptic digestion of the native enzyme and the inactivated beta-lactamase followed by LC/MS identified two 22 amino acid peptides containing the active site Ser64 modified by a fragment of tazobactam. These two peptides were increased in mass by 70 and 88 Da, respectively. UV difference spectra following inactivation revealed the presence of a new species with a 302 nm lambda(max). Based upon the increase in molecular mass of the tazobactam inactivated CMY-2 beta-lactamase, we propose that during the inactivation of this beta-lactamase by tazobactam an imine is formed. Tautomerization forms the spectrally observed enamine. Hydrolysis generates the covalently attached malonyl semialdehyde, its hydrate, or an enol. This work provides information on the mass of a stable enzyme intermediate of a class C beta-lactamase inactivated by tazobactam and, for the first time, unequivocal evidence that a cross-linked species is not required for apparent inactivation.  相似文献   

2.
The increasing number of bacteria resistant to combinations of beta-lactam and beta-lactamase inhibitors is creating great difficulties in the treatment of serious hospital-acquired infections. Understanding the mechanisms and structural basis for the inactivation of these inhibitor-resistant beta-lactamases provides a rationale for the design of novel compounds. In the present work, SHV-1 and the Ser(130) --> Gly inhibitor-resistant variant of SHV-1 beta-lactamase were inactivated with tazobactam, a potent class A beta-lactamase inhibitor. Apoenzymes and inhibited beta-lactamases were analyzed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), digested with trypsin, and the products resolved using LC-ESI/MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The mass increases observed for SHV-1 and Ser(130) --> Gly (+ Delta 88 Da and + Delta 70 Da, respectively) suggest that fragmentation of tazobactam readily occurs in the inhibitor-resistant variant to yield an inactive beta-lactamase. These two mass increments are consistent with the formation of an aldehyde (+ Delta 70 Da) and a hydrated aldehyde (+ Delta 88 Da) as stable products of inhibition. Our results reveal that the Ser --> Gly substitution at amino acid position 130 is not essential for enzyme inactivation. By examining the inhibitor-resistant Ser(130) --> Gly beta-lactamase, our data are the first to show that tazobactam undergoes fragmentation while still attached to the active site Ser(70) in this enzyme. After acylation of tazobactam by Ser(130) --> Gly, inactivation proceeds independent of any additional covalent interactions.  相似文献   

3.
The nucleotide sequence of the PSE-4 beta-lactamase gene from Pseudomonas aeruginosa strain Dalgleish has been determined. The structural gene encodes a polypeptide product of 252 amino acids with an estimated molecular mass of 29,246 Da for the mature form of the protein. The PSE-4 gene has limited homology with other beta-lactamases at the DNA level. An alignment of all known class A beta-lactamases permitted as to identify specific residues important for enzyme structure and function. To confirm observations based on the linear sequences, we designed a new molecular model for PSE-4 beta-lactamase based on x-ray data from the Staphylococcus aureus PC1 beta-lactamase at 2.0-A resolution. The structural similarities between PSE-4 and class A beta-lactamases are more extensive than indicated by earlier biochemical studies. The combined structural and sequence information now available for a series of beta-lactamases identifies conserved residues in these molecules, giving insight of their divergence and ancestry. Analysis of the PSE-4 flanking DNA sequences revealed an integration site common to antibiotic resistance genes inserted into transposons of the Tn21 family with the target integration sequence AAGTT.  相似文献   

4.
The 10(5) resolving power and MS/MS capabilities of Fourier-transform mass spectrometry provide electrospray ionization mass spectra containing >100 molecular and fragment ion mass values of high accuracy. Applying these spectra to the detection and localization of errors and modifications in the DNA-derived sequences of proteins is illustrated with the thiCEFSGH thiamin biosynthesis operon from Escherichia coli. Direct fragmentation of the multiply-charged intact protein ions produces large fragment ions covering the entire sequence; further dissociation of these fragment ions provides information on their sequences. For ThiE (23 kDa), the entire sequence was verified in a single spectrum with an accurate (0.3 Da) molecular weight (Mr) value, with confirmation from MS/MS fragment masses. Those for ThiH (46 kDa) showed that the Mr value (1 Da error) represented the protein without the start Met residue. For ThiF (27 kDa), MS/MS localized a sequence discrepancy to a 34 residue peptide. The first 107 residues of ThiC (74 kDa) were shown to be correct, with C-terminal heterogeneity indicated. For ThiG (predicted Mr = 34 kDa), ESI/FTMS showed two components of 7,310.74 (ThiS) and 26,896.5 Da (ThiG); MS/MS uncovered three reading frame errors and a stop codon for the first protein. MS/MS ions are consistent with 68 fragments predicted by the corrected ThiS/ThiG DNA sequences.  相似文献   

5.
The kernel cake produced from Balanites aegyptiaca fruit of Israeli origin was analysed for its saponin constituents using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The HPLC was equipped with a reversed-phase C18 column and a refractive index detector (RID), and elution was isocratic with methanol and water (70:30). The MS system was equipped with electrospray ionisation (ESI). Nine compounds were chromatographically separated, their masses were determined in the negative ion mode and subsequent fragmentation of each component was carried out. From the nine components, six saponins with molecular masses of 1196, 1064, 1210, 1224, 1078 and 1046 Da were identified, with the compound of mass 1210 Da being the main saponin (ca. 36%). Saponins with masses of 1224 and 1046 Da have not been previously reported in B. aegyptiaca. In all saponins, diosgenin was found to be the sole aglycone. This study shows that HPLC-ESI/MS is a quick and reliable technique for characterizing the saponins from kernel cake of B. aegyptiaca.  相似文献   

6.
The hydrolysis of beta-lactam antibiotics by class A beta-lactamases is a common cause of bacterial resistance to these agents. The beta-lactamase inhibitory protein (BLIP) is able to bind and inhibit several class A beta-lactamases, including TEM-1 beta-lactamase and SME-1 beta-lactamase. Although the TEM-1 and SME-1 enzymes share 33% amino acid sequence identity and a similar fold, they differ substantially in surface electrostatic properties and the conformation of a loop-helix region that BLIP binds. Alanine-scanning mutagenesis was performed to identify the residues on BLIP that contribute to its binding affinity for each of these enzymes. The results indicate that the sequence requirements for binding are similar for both enzymes with most of the binding free energy provided by two patches of aromatic residues on the surface of BLIP. Polar residues such as several serines in the interface do not make significant contributions to affinity for either enzyme. In addition, the specificity of binding is significantly altered by mutation of two charged residues, Glu73 and Lys74, that are buried in the structure of the TEM-1.BLIP complex as well as by residues located on two loops that insert into the active site pocket. Based on the results, a E73A/Y50A double mutant was constructed that exhibited a 220,000-fold change in binding specificity for the TEM-1 versus SME-1 enzymes.  相似文献   

7.
Clavulanic acid is a potent mechanism-based inhibitor of TEM-1 and SHV-1beta-lactamases, enzymes that confer resistance to beta-lactams in many gram-negative pathogens. This compound has enjoyed widespread clinical use as part of beta-lactam beta-lactamase inhibitor therapy directed against penicillin-resistant pathogens. Unfortunately, the emergence of clavulanic acid-resistant variants of TEM-1 and SHV-1 beta-lactamase significantly compromise the efficacy of this combination. A single amino acid change at Ambler position Ser130 (Ser --> Gly) results in resistance to inactivation by clavulanate in the SHV-1 and TEM-1beta-lactamases. Herein, we investigated the inactivation of SHV-1 and the inhibitor-resistant S130G variant beta-lactamases by clavulanate. Using liquid chromatography electrospray ionization mass spectrometry, we detected multiple modified proteins when SHV-1 beta-lactamase is inactivated by clavulanate. Matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to study tryptic digests of SHV-1 and S130Gbeta-lactamases (+/- inactivation with clavulanate) and identified peptides modified at the active site Ser70. Ultraviolet (UV) difference spectral studies comparing SHV-1 and S130Gbeta-lactamases inactivated by clavulanate showed that the formation of reaction intermediates with absorption maxima at 227 and 280 nm are diminished and delayed when S130Gbeta-lactamase is inactivated. We conclude that the clavulanic acid inhibition of the S130G beta-lactamase must follow a branch of the normal inactivation pathway. These findings highlight the importance of understanding the intermediates formed in the inactivation process of inhibitor-resistant beta-lactamases and suggest how strategic chemical design can lead to novel ways to inhibit beta-lactamases.  相似文献   

8.
beta-Lactamase inhibitory protein (BLIP) is a potent inhibitor of several beta-lactamases including TEM-1 beta-lactamase (Ki = 0.1 nM). The co-crystal structure of TEM-1 beta-lactamase and BLIP has been solved, revealing the contact residues involved in the interface between the enzyme and inhibitor. To determine which residues in TEM-1 beta-lactamase are critical for binding BLIP, the method of monovalent phage display was employed. Random mutants of TEM-1 beta-lactamase in the 99-114 loop-helix and 235-240 B3 beta-strand regions were displayed as fusion proteins on the surface of the M13 bacteriophage. Functional mutants were selected based on the ability to bind BLIP. After three rounds of enrichment, the sequences of a collection of functional beta-lactamase mutants revealed a consensus sequence for the binding of BLIP. Seven loop-helix residues including Asp-101, Leu-102, Val-103, Ser-106, Pro-107, Thr-109, and His-112 and three B3 beta-strand residues including Ser-235, Gly-236, and Gly-238 were found to be critical for tight binding of BLIP. In addition, the selected beta-lactamase mutants A113L/T114R and E240K were found to increase binding of BLIP by over 6- and 11-fold, respectively. Combining these substitutions resulted in 550-fold tighter binding between the enzyme and BLIP with a Ki of 0.40 pM. These results reveal that the binding between TEM-1 beta-lactamase and BLIP can be improved and that there are a large number of sequences consistent with tight binding between BLIP and beta-lactamase.  相似文献   

9.
Infections with bacteria that contain hydrolytic beta-lactamase enzymes are becoming a serious problem in the United States. Mutations at Met-69, an amino acid proximal to the active site Ser-70 in the TEM-1 and SHV-1 beta-lactamases, have emerged as a puzzling cause of bacterial resistance to inhibitors of beta-lactamases. Site-saturation mutagenesis of the 69 position in SHV beta-lactamase was performed to determine how mutations of this non-catalytic residue play a role in increasing 50% inhibitory concentrations (IC(50) concentrations) for clinically important beta-lactamase enzyme inhibitors. Two distinct phenotypes are evident in the variant beta-lactamases studied: significantly increased minimum inhibitory concentrations (microg/ml) and IC(50) concentrations to clavulanic acid for the Met69Ile, Leu, and Val substitutions, and unanticipated increased minimum inhibitory concentrations and hydrolytic activity toward ceftazidime, an advanced generation cephalosporin antibiotic, for the Met69Lys, Tyr- and Phe-substituted enzymes. Molecular modeling studies emphasize the conserved structure of these substitutions despite great variation in substrate specificity. This study demonstrates the key role of Met-69 in defining substrate specificity of SHV beta-lactamases and alerts us to new phenotypes that may emerge clinically.  相似文献   

10.
We have determined the nucleotide sequence of the plasmid genes blaT-4 and blaT-5 which encode the broad-substrate-range beta-lactamases TEM-4 and TEM-5, respectively. The TEM-4 enzyme, which confers high-level resistance to cefotaxime (Ctx) and ceftazidime (Caz), differed from the TEM-1 penicillinase by four amino acid substitutions. Two of the mutations are identical to those responsible for the wide substrate range of the TEM-3 beta-lactamase which hydrolyses Ctx and Caz. The amino acid sequence of TEM-5, which confers higher levels of resistance to Caz than to other recently developed cephalosporins, differed from that of TEM-1 by three mutations distinct from those of TEM-4. Analysis of the location of the mutations in the primary and tertiary structures of class A beta-lactamases suggests that interactions between the substituted residues and beta-lactam antibiotics non-hydrolysable by TEM-1 and TEM-2 allow TEM-4 and TEM-5 to hydrolyse efficiently novel broad-spectrum cephalosporins such as Ctx and Caz.  相似文献   

11.
Widespread use of beta-lactam antibiotics has promoted the evolution of beta-lactamase mutant enzymes that can hydrolyze ever newer classes of these drugs. Among the most pernicious mutants are the inhibitor-resistant TEM beta-lactamases (IRTs), which elude mechanism-based inhibitors, such as clavulanate. Despite much research on these IRTs, little is known about the structural bases of their action. This has made it difficult to understand how many of the resistance substitutions act as they often occur far from Ser-130. Here, three IRT structures, TEM-30 (R244S), TEM-32 (M69I/M182T), and TEM-34 (M69V), are determined by x-ray crystallography at 2.00, 1.61, and 1.52 A, respectively. In TEM-30, the Arg-244 --> Ser substitution (7.8 A from Ser-130) displaces a conserved water molecule that usually interacts with the beta-lactam C3 carboxylate. In TEM-32, the substitution Met-69 --> Ile (10 A from Ser-130) appears to distort Ser-70, which in turn causes Ser-130 to adopt a new conformation, moving its O gamma further away, 2.3 A from where the inhibitor would bind. This substitution also destabilizes the enzyme by 1.3 kcal/mol. The Met-182 --> Thr substitution (20 A from Ser-130) has no effect on enzyme activity but rather restabilizes the enzyme by 2.9 kcal/mol. In TEM-34, the Met-69 --> Val substitution similarly leads to a conformational change in Ser-130, this time causing it to hydrogen bond with Lys-73 and Lys-234. This masks the lone pair electrons of Ser-130 O gamma, reducing its nucleophilicity for cross-linking. In these three structures, distant substitutions result in accommodations that converge on the same point of action, the local environment of Ser-130.  相似文献   

12.
A method based on PCR-SSCP has been developed to detect presumptive Inhibitor-Resistant TEM (IRT) beta-lactamases in Escherichia coli. The capacity of this technique to differentiate genes from 11 control strains encoding IRT beta-lactamases was evaluated with PCR products digested with RsaI. All the bla(TEM) genes studied could be distinguished by their electrophoretic mobilities. Applied to 29 epidemiologically unrelated clinical isolates of E. coli resistant to amoxicillin-clavulanate (MIC, > or =32 microg/ml), the electrophoretic mobilities of the digested bla(TEM) PCR products were identical to those of the reference bla(TEM-1A) (6 strains) and bla(TEM-1B) (18 strains) genes. The remaining five bla(TEM) PCR products displayed SSCP profiles different from those of the reference bla(TEM) genes and their nucleotide sequence identified them as bla(TEM-1C) in one strain, bla(TEM-30/IRT-2) in two strains, bla(TEM-37/IRT-8) in one strain, and bla(TEM-40/IRT-11) in one isolate. Overexpression of the wild-type bla(TEM-1) gene, as detected by high-level resistance to beta-lactams and enzyme assay, accounted for resistance in the 24 E. coli containing bla(TEM-1). We report a simple one PCR step SSCP that can be used in epidemiological studies for rapid preliminary detection of IRT beta-lactamases; identification should be confirmed by sequence data.  相似文献   

13.
Phylogeny of LCR-1 and OXA-5 with class A and class D β-lactamases   总被引:5,自引:0,他引:5  
The nucleotide sequences of blaLCR-1 and blaOXA-5 beta-lactamase genes have been determined. Polypeptide products of 260 and 267 amino acids with estimated molecular masses of 27 120 Da and 27,387 Da were obtained for the mature form of LCR-1 and OXA-5 proteins. A progressive alignment was used to evaluate the extent of identity between LCR-1 and OXA-5 with 29 other beta-lactamase amino acid sequences. The data showed that both belong to class D. We identified amino acids conserved in 24 positions for class A beta-lactamases and in 28 positions for five class D enzymes. The structural similarities between class A and class D beta-lactamases are more extensive than indicated by earlier biochemical studies with overall 16% identity between both classes. From the alignment, dendograms were constructed with a distance-matrix and parsimony methods which defined three major groups of proteins subdivided into clusters giving insight on beta-lactamase phylogeny and evolution.  相似文献   

14.
Structure of the SHV-1 beta-lactamase   总被引:5,自引:0,他引:5  
Kuzin AP  Nukaga M  Nukaga Y  Hujer AM  Bonomo RA  Knox JR 《Biochemistry》1999,38(18):5720-5727
The X-ray crystallographic structure of the SHV-1 beta-lactamase has been established. The enzyme crystallizes from poly(ethylene glycol) at pH 7 in space group P212121 with cell dimensions a = 49.6 A, b = 55.6 A, and c = 87.0 A. The structure was solved by the molecular replacement method, and the model has been refined to an R-factor of 0.18 for all data in the range 8.0-1.98 A resolution. Deviations of model bonds and angles from ideal values are 0.018 A and 1.8 degrees, respectively. Overlay of all 263 alpha-carbon atoms in the SHV-1 and TEM-1 beta-lactamases results in an rms deviation of 1.4 A. Largest deviations occur in the H10 helix (residues 218-224) and in the loops between strands in the beta-sheet. All atoms in residues 70, 73, 130, 132, 166, and 234 in the catalytic site of SHV-1 deviate only 0.23 A (rms) from atoms in TEM-1. However, the width of the substrate binding cavity in SHV-1, as measured from the 104-105 and 130-132 loops on one side to the 235-238 beta-strand on the other side, is 0.7-1.2 A wider than in TEM-1. A structural analysis of the highly different affinity of SHV-1 and TEM-1 for the beta-lactamase inhibitory protein BLIP focuses on interactions involving Asp/Glu104.  相似文献   

15.
We report the characterization of 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936) as a mechanism-based inhibitor of NQO1. Inactivation of NQO1 by ES936 was time- and concentration-dependent and required the presence of a pyridine nucleotide cofactor consistent with a need for metabolic activation. That ES936 was an efficient inhibitor was demonstrated in these studies by the low partition ratio (1.40 +/- 0.03). The orientation of ES936 in the active site of NQO1 was examined by X-ray crystallography and found to be opposite to that observed for other indolequinones acting as substrates. ES936 was oriented in such a manner that, after enzymatic reduction and loss of a nitrophenol leaving group, a reactive iminium species was located in close proximity to nucleophilic His 162 and Tyr 127 and Tyr 129 residues in the active site. To determine if ES936 was covalently modifying NQO1, ES936-treated protein was analyzed by electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS). The control NQO1 protein had a mass of 30864 +/- 6 Da (n = 20, theoretical, 30868.6 Da) which increased by 217 Da after ES936 treatment (31081 +/- 7 Da, n = 20) in the presence of NADH. The shift in mass was consistent with adduction of NQO1 by the reactive iminium derived from ES936 (M + 218 Da). Chymotryptic digestion of the protein followed by LC/MS analysis located a tetrapeptide spanning amino acids 126-129 which was adducted with the reactive iminium species derived from ES936. LC/MS/MS analysis of the peptide fragment confirmed adduction of either Tyr 127 or Tyr 129 residues. This work demonstrates that ES936 is a potent mechanism-based inhibitor of NQO1 and may be a useful tool in defining the role of NQO1 in cellular systems and in vivo.  相似文献   

16.
Bacterial resistance to beta-lactam/beta-lactamase inhibitor combinations by single amino acid mutations in class A beta-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A beta-lactamases, alterations at Ser-130 confer resistance to inactivation by the beta-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 beta-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G beta-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G beta-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 microm; S130G, 46.5 microm) and tazobactam (SHV-1, 0.07 microm; S130G, 4.2 microm) were observed. In contrast, the k(inact)s of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for beta-lactams and beta-lactamase inhibitors. These results underscore the mechanistic versatility of class A beta-lactamases and have implications for the design of novel beta-lactamase inhibitors.  相似文献   

17.
Antibiotic resistance mediated by constantly evolving beta-lactamases is a serious threat to human health. The mechanism of inhibition of these enzymes by therapeutic beta-lactamase inhibitors is probed using a novel approach involving Raman microscopy and x-ray crystallography. We have presented here the high resolution crystal structures of the beta-lactamase inhibitors sulbactam and clavulanic acid bound to the deacylation-deficient E166A variant of SHV-1 beta-lactamase. Our previous Raman measurements have identified the trans-enamine species for both inhibitors and were used to guide the soaking time and concentration to achieve full occupancy of the active sites. The two inhibitor-bound x-ray structures revealed a linear trans-enamine intermediate covalently attached to the active site Ser-70 residue. This intermediate was thought to play a key role in the transient inhibition of class A beta-lactamases. Both the Raman and x-ray data indicated that the clavulanic acid intermediate is decarboxylated. When compared with our previously determined tazobactam-bound inhibitor structure, our new inhibitor-bound structures revealed an increased disorder in the tail region of the inhibitors as well as in the enamine skeleton. The x-ray crystallographic observations correlated with the broadening of the O-C=C-N (enamine) symmetric stretch Raman band near 1595 cm(-1). Band broadening in the sulbactam and clavulanic acid inter-mediates reflected a heterogeneous conformational population that results from variations of torsional angles in the O-(C=O)-C=C=NH-C skeleton. These observations led us to conclude that the conformational stability of the trans-enamine form is critical for their transient inhibitory efficacy.  相似文献   

18.
The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophoresis and gel-staining with ProQ Diamond and the protein was digested by either trypsin or chymotrypsin for maximum sequence coverage to facilitate identification of phosphorylated positions. Prior to analysis by mass spectrometry, samples were either desalted, passed over TiO(2) or both for improved phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine residues (Ser72, Ser108, Ser120) in the phosphorylated form.  相似文献   

19.
In order to identify new orcokinin and orcomyotropin-related peptides in crustaceans, molecular and immunocytochemical data were combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In the crayfish Procambarus clarkii, four orcokinins and an orcomyotropin-related peptide are present on the precursor. Because these peptides are highly conserved, we assumed that other species have an identical number of peptides. To identify the peptides, immunocytochemistry was used to localize the regions of the stomatogastric nervous system in which orcokinins are predominantly present. One of the regions predominantly containing orcokinins was a previously undescribed olive-shaped neuropil region within the commissural ganglia of the lobsters Homarus americanus and Homarus gammarus. MALDI-TOF MS on these regions identified peptide masses that always occur together with the known orcokinins. Seven peptide ions occurred together in the peptide massspectra of the lobsters. Mass spectrometric fragmentation by MALDI-MS post-source decay (PSD) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI Q-TOF MS) collision-induced dissociation (CID) were used in the identification of six of these masses, either as orcokinins or as orcomyotropin-related peptides and revealed three hitherto unknown peptide variants, two of which are [His13]-orcokinin ([M+H]+ = 1540.8 Da) and an orcomyotropin-related peptide FDAFTTGFGHN ([M+H]+ = 1213.5 Da). The mass of the third previously unknown orcokinin variant corresponded to that of an identified orcokinin, but PSD fragmentation did not support the suggested amino acid sequence. CID analysis allowed partial de novo sequencing of this peptide. In the crab Cancer pagurus, five orcokinins and an orcomyotropin-related peptide were unambigously identified, including the previously unknown peptide variant [Ser9-Val13]-orcokinin ([M+H]+ = 1532.8 Da).  相似文献   

20.
The N-terminal domain of human immunodeficiency virus (HIV)-1 glycoprotein 41,000 (FP; residues 1–23; NH2-AVGIGALFLGFLGAAGSTMGARS-CONH2) is involved in the fusion and cytolytic processes underlying viral-cell infection. Here, we use circular dichroism (CD) spectroscopy, along with electrospray ionization (ESI) mass spectrometry and tandem (MS/MS) mass spectrometry during the course of hydrogen/deuterium exchange, to probe the local conformations of this synthetic peptide in two membrane mimics. Since amino acids that participate in defined secondary structure (i.e., α-helix or β-sheet) exchange amido hydrogens more slowly than residues in random structures, deuterium exchange was combined with CD spectroscopy to map conformations to specific residues. For FP suspended in the highly structure-promoting solvent hexafluoroisopropanol (HFIP), CD spectra indicated high α-helix and disordered structures, whereas ESI and MS/MS mass spectrometry indicated that residues 5–15 were α-helical and 16–23 were disordered. For FP suspended in the less structure-promoting solvent trifluoroethanol (TFE), CD spectra showed lower α-helix, with ESI and MS/MS mass spectrometry indicating that only residues 9–15 participated in the α-helix. These results compare favorably with previous two-dimensional nuclear magnetic resonance studies on the same peptide. Proteins Suppl. 2:38–49, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号