首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the effects of a diet chronically deficient in alpha-linolenic acid, the precursor of long-chain n-3 polyunsaturated fatty acids, on dopaminergic neurotransmission in the shell region of the nucleus accumbens of rats. In vivo microdialysis experiments showed increased basal levels of dopamine and decreased basal levels of metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in awake rats from the deficient group compared to controls. The release of dopamine under KCl stimulation was similar in both dietary groups. By contrast, the release of dopamine from the vesicular storage pool under tyramine stimulation was 90% lower in the deficient than in the control rats. Autoradiographic studies in the same cerebral region revealed a 60% reduction in the vesicular monoamine transporter sites in the deficient group. Dopamine D(2) receptors were 35% increased in these rats compared to controls, whereas no change occurred for D(1) receptors and membrane dopamine transporters. These results demonstrated that chronic n-3 polyunsaturated fatty acid deficiency modifies several factors of dopaminergic neurotransmission in the nucleus accumbens. These findings are in agreement with the changes in dopaminergic neurotransmission already observed in the frontal cortex, and with the behavioral disturbances described in these deficient rats.  相似文献   

2.
We studied the effect of local administration of nicotine on the release of monoamines in striatum, substantia nigra, cerebellum, hippocampus, cortex (frontal, cingulate), and pontine nucleus and on the release of glutamic acid in striatum of rats in vivo, using microdialysis for nicotine administration and for measuring extracellular amine and glutamic acid levels. Following nicotine administration the extracellular concentration of dopamine, increased in all regions except cerebellum; serotonin increased in cingulate and frontal cortex; and norepinephrine increased in substantia nigra, cingulate cortex, and pontine nucleus. Cotinine, the major nicotine metabolite, had no effect at similar concentrations. The cholinergic antagonists mecamylamine and atropine, the dopaminergic antagonists haloperidol and sulpiride, and the excitatory amino acid antagonist kynurenic acid all inhibited the nicotine-induced increase of extracellular dopamine in the striatum. The fact that kynurenic acid almost completely prevented the effects of nicotine, and nicotine at this concentration produced a 6-fold increase of glutamic acid release, suggests that the effect of nicotine is mainly mediated via glutamic acid release.  相似文献   

3.
Methylazoxymethanol (MAM)-induced cerebral hypoplasia resulted in a significant increase in densities of both serotonin uptake sites in frontal cortex and dopamine uptake sites in striatum, suggesting serotonergic and dopaminergic axon terminals were compressed in the smaller brain volumes. The density of S2 serotonin receptors in MAM-lesioned frontal cortex was decreased probably due to down-regulation, while densities of D1 and D2 dopamine receptors in striatum were identical between MAM-lesioned rats and control rats.  相似文献   

4.
This study examined the effects of dietary alpha-linolenic acid deficiency followed or not by supplementation with phospholipids rich in n;-3 polyunsaturated fatty acid (PUFA) on the fatty acid composition of total phospholipids in 11 brain regions. Three weeks before mating, mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group were supplemented with n;-3 polyunsaturated fatty acids (PUFA) from either egg yolk or pig brain phospholipids for 2 months. Saturated and monounsaturated fatty acid levels varied among brain regions and were not significantly affected by the diet. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all regions. alpha-Linolenic acid deficiency decreased the level of 22:6 n-3 and was compensated by an increase in 22:5 n-6 in all regions. However, the brain regions were affected differently. After the pituitary gland, the frontal cortex, and the striatum were the most markedly affected with 40% reduction of 22:6 n-3. Supplementation with egg yolk or cerebral phospholipids in deficient mice restored a normal fatty acid composition in brain regions except for the frontal cortex. There was a regional distribution of the fatty acids in the brain and the impact of deficiency in alpha-linolenic acid was region-specific. Dietary egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for the recovery of altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

5.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

6.
We explored the effects of chronic alpha-linolenic acid dietary deficiency on serotoninergic neurotransmission. In vivo synaptic serotonin (5-HT) levels were studied in basal and pharmacologically stimulated conditions using intracerebral microdialysis in the hippocampus of awake 2-month-old rats. We also studied the effects of reversion of the deficient diet on fatty acid composition and serotoninergic neurotransmission. A balanced (control) diet was supplied to deficient rats at different stages of development, i.e. from birth, 7, 14 or 21 days of age. We demonstrated that chronic n-3 polyunsaturated fatty acid dietary deficiency induced changes in the synaptic levels of 5-HT both in basal conditions and after pharmacological stimulation with fenfluramine. Higher levels of basal 5-HT release and lower levels of 5-HT-stimulated release were found in deficient than in control rats. These neurochemical modifications were reversed by supply of the balanced diet provided at birth or during the first 2 weeks of life through the maternal milk, whereas they persisted if the balanced diet was given from weaning (at 3 weeks of age). This suggests that provision of essential fatty acids is durably able to affect brain function and that this is related to the developmental stage during which the deficiency occurs.  相似文献   

7.
This study investigated the effects of a diet deficient in alpha-linolenic acid followed or not by supplementation with phospholipids rich in n-3 polyunsaturated fatty acids (PUFA) on behavior and phospholipid fatty acid composition in selected brain regions. Three weeks before mating, two groups of mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or a diet deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group was supplemented with n-3 PUFA from either egg yolk or pig brain phospholipids for 2 months. In the open field, rearing activity was significantly reduced in the deficient group. In the elevated plus maze (anxiety protocol), the time spent on open arms was significantly smaller in deficient mice than in controls. Using the learning protocol with the same task, the alpha-linolenic acid deficiency induced a learning deficit. Rearing activity and learning deficits were completely restored by supplementation with egg yolk or cerebral phospholipids, though the level of anxiety remained significantly higher than that of controls. There were no differences among the 4 diet groups for either the Morris water maze or passive avoidance. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all other regions analysed. The frontal cortex and the striatum were the most markedly affected by the deficiency. Supplementation with phospholipids restored normal fatty acid composition in brain regions except for frontal cortex. Egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for reversing behavioral changes and altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

8.
The catechol and indole pathways are important components underlying plasticity in the frontal cortex and basal ganglia. This study demonstrates that administering rats either cocaine or a selective serotonin (or 5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) for 16 weeks results in reduced density of dopaminergic and noradrenergic terminals in the striatum and olfactory bulb, respectively, reflecting pruning of the terminal arbor of ventral midbrain dopaminergic and locus coeruleus noradrenergic neurones. In the striatum of cocaine-treated animals, basal dopamine levels, as well as cocaine-induced dopamine release, is diminished compared with controls. In contrast, serotonergic fibers, projecting from the raphe, sprout and have increased terminal density in the lateral septal nucleus and frontal cortex, following long-term cocaine or SSRI treatment. This is associated with elevated basal 5-HT and enhanced cocaine-induced 5-HT release in the frontal cortex. The anatomical and neurochemical changes in serotonergic fibers following cocaine or SSRI treatment may be explained by attenuated 5-HT1A autoreceptor function in the raphe. This study demonstrates extensive plasticity in the morphology and neurochemistry of the catechol and indole pathways that contribute to drug-induced plasticity of the corticostriatal (and other) projections. Moreover, our data suggest that drug-induced plastic adaptation is anatomically widespread and consequently, likely to have multiple and complex consequences.  相似文献   

9.
Increased concentrations of the endogenous tryptophan metabolite 3-hydroxykynurenine (3-HK) were measured in the brains of vitamin B6 deficient neonatal rats. Mean concentrations of 3-HK in B6 deficient cerebellum, corpus striatum, frontal cortex, and pons/medulla ranged from 9.7 to 18.6 and 102 to 142 nmol/g of wet tissue at 14 and 18 days of age, respectively. 3-HK was not significantly increased in control neonatal or adult rat brain, vitamin B6 deficient rat brain at 7 days of age, or in brains from adult rats deprived of vitamin B6 for 58 days. The administration of daily intraperitoneal injections of vitamin B6 from the 14th to the 18th day of age decreased the concentration of 3-HK to control levels. 3-HK has been shown by other investigators to produce seizures when injected into the cerebral ventricles of adult rodents. Thus, our studies show the accumulation in brain of a putative endogenous convulsant as the result of a nutritional deficiency.  相似文献   

10.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet.  相似文献   

11.
Dopamine and serotonin neurotransmission has been investigated in striatum and in the septohippocampal pathway of the locomotor activity and memory deficient Snell dwarf mouse. In striatum a sharp decrease in 3-MT levels with a concomitant decrease in DA turnover is indicative of a strong decrement in the functional activity of striatal dopaminergic terminals in the mutant mouse. The observed enhancement in serotoninergic markers (5HT, 5HIAA, 5 HTP), at the opposite, provide evidence for an altered relationship between serotonin and dopamine striatal neurotransmission in the mutant mouse as compared to the normal mouse. Impairment in dopamine and serotonin neurotransmission has also been observed in the septohippocampal pathway where the removal of acidic metabolites of these neurotransmitters from brain appears to be disturbed. The data presented here are discussed with regard to previously noted alterations in cholinergic activity as well as to the behavioral disturbances of the dwarf mutant.  相似文献   

12.
Because brain membranes contain large amounts of docosahexaenoic acid (DHA, 22:6n-3), and as (n-3) PUFA dietary deficiency can lead to impaired attention, learning, and memory performance in rodents, we have examined the influence of an (n-3) PUFA-deprived diet on the central cholinergic neurotransmission system. We have focused on several cholinergic neurochemical parameters in the frontal cortex and hippocampus of rats fed an (n-3) PUFA-deficient diet, compared with rats fed a control diet. The (n-3) PUFA deficiency resulted in changes in the membrane phospholipid compositions of both brain regions, with a dramatic loss (62-77%) of DHA. However, the cholinergic pathway was only modified in the hippocampus and not in the frontal cortex. The basal acetylcholine (ACh) release in the hippocampus of deficient rats was significantly (72%) higher than in controls, whereas the KCl-induced release was lower (34%). The (n-3) PUFA deprivation also caused a 10% reduction in muscarinic receptor binding. In contrast, acetylcholinesterase activity and the vesicular ACh transporter in both brain regions were unchanged. Thus, we evidenced that an (n-3) PUFA-deficient diet can affect cholinergic neurotransmission, probably via changes in the phospholipid PUFA composition.  相似文献   

13.
Abstract: The effects of chronic manganese chloride administration (1 mg MnCl2 4H2O/ml of drinking water) and ageing on the regional distribution of monoamine oxidase (MAO, EC 1.4.3.4) were studied in 2-month- and 24–28-month-old rats. In both the control and Mn-treated rats, the serotonin oxidation (type A) rates decreased in hypothalamus, pons and medulla, striatum, midbrain and cerebral cortex, but not in cerebellum, in ageing. On the other hand the benzylamine oxidation (type B) rates in hypothalamus, striatum and cerebral cortex increased in ageing. In all regions except the cerebellum, there was a uniform decrease in the A/B ratio. This decrease was verified by differential inhibition studies using clorgyline and l -deprenyl, specific type A and type B inhibitors respectively. The dopamine-oxidising rates decreased in all regions, except the cerebral cortex and the cerebellum, in ageing control rats. This age-related decrease was not seen in the striatum and midbrain of manganese-treated rats. In these rats the other effect was an age-related increase in the rate of oxidation of all the amines in the cerebellum, not observed in control rats. These selective effects of manganese are only seen when comparing age-related changes in both groups of animals, since comparison of manganese-treated rats with age-matched controls showed a significant difference only in the rate of serotonin oxidation in the cerebellum of 2-month-old rats. The relationship of these observations to the effects of ageing and manganese encephalopathy on specific amine systems is discussed.  相似文献   

14.
Previous investigations have shown that the lipid composition of cerebral membranes and dopaminergic neurotransmission are changed under chronic alpha-linolenic acid diet deficiency in the rat. This study investigated whether these changes could be reversed and if the stage of brain maturation might play a role in the recovery process. The effects of reversion on the fatty acid (FA) composition and dopaminergic neurotransmission were studied in brain regions known to be affected by such deficiency (i.e., the prefrontal cortex and nucleus accumbens) in 2-month-old animals. Dopamine release under pharmacological stimulation was studied using a dual-probe microdialysis method. Vesicular monoamine transporters were studied using quantitative autoradiography. The reversal diet, with adequate levels of n-6 and n-3 polyunsaturated fatty acids (PUFAs), was given to deficient rats at different stages of development (0, 7, 14, or 21 days of age). The results showed that when given during the lactating period, this diet was able to restore both the FA composition of brain membranes and the parameters of dopaminergic neurotransmission studied. However, when given from weaning, it allowed partial recovery of biochemical parameters but no recovery of neurochemical factors. The occurrence of profound n-3 PUFA deficiency during the lactating period could therefore be an environmental insult leading to irreversible damage to specific brain functions.  相似文献   

15.
The binding of 125I-LSD (2-[125I]-lysergic acid diethylamide) was studied in various mouse brain regions following intravenous injection of the radioligand. The high specific activity of 125I-LSD enabled the injection of low mass doses (14 ng/kg), which are well below the threshold for induction of any known physiological effect of the probe. The highest levels of 125I-LSD binding were found in the frontal cortex, olfactory tubercles, extra-frontal cortex and striatum while the lowest level was found in the cerebellum. Binding was saturable in the frontal cortex but increased linearly in the cerebellum with increasing doses of 125I-LSD. Serotonergic compounds potently inhibited 125I-LSD binding in cortical regions, olfactory tubercles, and hypothalamus but had no effect in the cerebellum. Dopaminergic compounds caused partial inhibition of binding in the striatum while adrenergic compounds were inactive. From these studies we conclude that 125I-LSD labels serotonin 5-HT2 receptor sites in cortical regions with no indication that other receptor sites are labeled. In the olfactory tubercles and hypothalamus, 125I-LSD labeling occurs predominantly or entirely at serotonin 5-HT2 sites. In the striatum, 125I-LSD labels approximately equal proportions of serotonergic and dopaminergic sites. This data indicates that 125I-LSD labels serotonin receptors in vivo and suggests that appropriate derivatives of 2I-LSD may prove useful for tomographic imaging of serotonin 5-HT2 receptors in the mammalian cortex.  相似文献   

16.
Omega-3 (n-3) fatty acid deficiency, elevated inflammatory signaling, and central serotonin (5-HT) turnover have separately been implicated in the pathophysiology of major depressive disorder (MDD). In the present study we investigated the interrelationship between n-3 fatty acid status, pro-inflammatory signaling activity, and central 5-HT turnover in vivo. Rats were fed diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA) during perinatal development (E0-P100), and a subset of rats fed the ALA− diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). In adulthood (P100), plasma interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), and C-reactive protein (CRP) levels were measured. Additionally, indices of liver n-6 fatty acid biosynthesis, erythrocyte fatty acid composition, and regional brain monoamine turnover were determined. Indices of liver delta-6 desaturase activity were up-regulated in n-3-deficient rats, and were associated with greater erythrocyte membrane arachidonic acid (AA, 20:4 n-6) composition. Plasma IL-6 (p=0.001), TNFα (p=0.02), and CRP (p=0.001) concentrations were significantly greater in n-3-deficient rats relative to controls. The 5-HIAA/5-HT ratio was significantly greater in frontal cortex, hypothalamus, and ventral striatum of n-3-deficient rats relative to controls. Changes in membrane n-3 and n-6 fatty acid composition, elevations in plasma IL-6 and TNFα, and increased central 5-HT turnover were all prevented by normalization of n-3 fatty acid status. Erythrocyte docosahexaenoic acid (DHA, 22:6 n-3) was inversely correlated, and AA and the AA/DHA and AA/eicosapentaenoic acid ratios were positively correlated, with plasma IL-6, TNFα, and CRP levels. Plasma IL-6 levels were positively correlated with 5-HIAA/5-HT ratios in all brain regions. These preclinical data provide evidence for a functional link between n-3 fatty acid deficiency, elevated peripheral inflammatory signaling, and increased central 5-HT turnover.  相似文献   

17.
We proposed several years ago that the behavioral effects of n-3 PUFA deficiency observed in animal models might be mediated through the dopaminergic and serotonergic systems that are very involved in the modulation of attention, motivation and emotion. We evaluated this hypothesis in an extended series of experiments on rats chronically diet-deficient in alpha-linolenic acid, the precursor of long-chain n-3 PUFA, in which we studied several parameters of these neurotransmission systems. The present paper synthesizes the main data we obtained on interactions between n-3 PUFA status and neurotransmission in animal models. We demonstrated that several parameters of neurotransmission were affected, such as the vesicular pool of dopamine and serotonin, thus inducing several regulatory processes such as modification of cerebral receptors in specific brain areas. We also demonstrated that (i) a reversal diet with adequate n-6 and n-3 PUFA given during the lactating period to rats originating from alpha-linolenic acid-deficient dams was able to restore both the fatty acid composition of brain membranes and several parameters of the dopaminergic and serotonergic neurotransmission, and (ii) when given from weaning, this reversal diet allowed partial recovery of biochemical parameters, but no recovery of neurochemical factors. The occurrence of profound n-3 PUFA deficiency during the lactating period could therefore be an environmental insult leading to irreversible damage to specific brain functions. Strong evidence is now showing that a profound n-3 PUFA experimental deficiency is able to alter several neurotransmission systems, at least the dopaminergic and serotonergic. Whether these experimental findings can be transposed to human pathophysiology must be taken cautiously, but reinforces the hypothesis that strong links exist between the PUFA status, aspects of brain function such as neurotransmission processes and behavior.  相似文献   

18.
AIM OF THE STUDY: To investigate the effect of in vivo short-term ethanol administration (i.p., 1.5 g/kg, 6 h) on binding characteristics of opioid receptor agonists in rat midbrain, as well as the contents of dopamine, serotonin and their precursors and metabolites in midbrain, striatum and hypothalamus of rats after long-term alcohol consumption. The methods of receptor binding assay and high performance liquid chromatography with electrochemical detection were used. The data obtained suggest that the response of neurotransmitter systems to short-term ethanol administration in different regions of rats brain is not identical. Our findings demonstrate that short-term ethanol administration may modulate dopaminergic transmission in the rat hypothalamus and striatum but this effect may be attenuated by down-regulation of OP, in the midbrain after long-term alcohol consumption. Serotonin system in hypothalamus becomes more sensitive to short-term ethanol administration after the long-term ethanol-containing liquid diet in comparison with control rats. Our results suggest that reinforcing properties of ethanol may be partially mediated by mechanisms involving the ethanol-induced disturbing of dopaminergic metabolism in the midbrain and hypothalamus and serotoninergic metabolism in hypothalamus.  相似文献   

19.
Abstract: Neonatal copper deficiency produced alterations in central neurotransmitter receptors that were selective with respect both to brain region and to neurotransmitter receptor type. Both high- and low-affinity dopamine receptor densities in the corpus striatum were significantly lowered, 55% and 29%, respectively, when expressed on a wet weight basis. There was a significant decrease in the level of muscarinic receptors in the striatum whether expressed on the basis of wet weight (50%) or protein (27%). A smaller reduction in muscarinic receptor density was observed in the cortex, whereas there was no effect of copper deficiency in the cerebellum. The treatment did not change β-adrenergic receptor binding in either the cortex or cerebellum. The affinities of the receptors for the ligands was not affected by the low-copper diet. It was previously reported that copper deficiency produces regionally specific decreases in the concentrations of dopamine and norepinephrine. The greatest reduction occurred in the concentration of dopamine in the corpus striatum. The results from both studies suggest that copper deficiency in post-weanling rats may induce a selective morphological lesion.  相似文献   

20.
Abstract: Since prolactin can regulate the release of striatal dopamine, we have evaluated the functional implications of this effect by studying the action of injected prolactin on the turnover rate of acetylcholine (TRACh) in various brain areas. We selected striatum and hippocampus as two areas in which dopaminergic terminals are known to regulate TRACh and frontal and parietal cortex as areas where dopamine has little or no control on TRAch. Intraventricularly injected prolactin reduces the TRACh in striatum, hippocampus, and thalamus but not in the two cortical areas. Intraseptal injection of prolactin reduces TRACh in hippocampus, suggesting that this polypeptide acts on hippocampus by changing the activity of afferent neurons impinging upon the cell bodies of the cholinergic septal-hippocampal neurons. The reductions in TRACh induced by intraventricular prolactin in hippocampus and striatum are nullified by 6-hydroxydopamine-induced lesions of dopaminergic neurons located in areas A9 and A10. These results suggest that the presence of dopaminergic neurons is required to obtain the prolactin-elicited decrease of TRAch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号