首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gametophytic self-incompatibility in the Phalaris coerulescens is controlled by two unlinked genes, S and Z . Isolation of the S gene from the pollen of this grass species indicated that the C terminus has significant hemology with thioredoxin H proteins. The protein from the C terminus, expressed in Escherichia coli , exhibits thioredoxin-like activity. This paper demonstrates that the C terminus of the S protein from an S complete mutant shows significant reduction in thioredoxin activity when compared with the wild-type form. Both pollen and stigma have lost self-incompatibility in this mutant. Close examination of the lesions, which were found only in the C terminus of the mutant gene suggests that the substitution of a serine by an arginine is responsible for the reduced enzymatic activity. The association between reduced activity and the loss of the self-incompatibility provides evidence for a role of thioredoxin activity in the self-incompatibility reaction of this species.  相似文献   

2.
X Li  J Nield  D Hayman    P Langridge 《The Plant cell》1994,6(12):1923-1932
In Phalaris coerulescens, gametophytic self-incompatibility is controlled by two unlinked genes: S and Z. A probable S gene has now been isolated and sequenced. This represents a novel self-incompatibility gene isolated from pollen in the multilocus system of a monocotyledonous plant. The gene is approximately 3 kb long, split by five introns, and exclusively expressed in the mature pollen. The deduced amino acid sequences from the S1, S2, and part of the S4 alleles showed that the protein has a variable N terminus and a conserved C terminus. The sequence of a complete mutant at the S locus indicated that mutations in the conserved C terminus, a thioredoxin-like region, led to loss of function. We propose that the gene has two distinct sections, a variable N terminus determining allele specificity and a conserved C terminus with the catalytic function. The gene structure and its deduced protein sequences strongly suggest that this monocotyledon has developed a self-incompatibility system entirely different from those operating in the dicotyledons. The possible interactions between S and Z genes in both pollen and stigma are discussed.  相似文献   

3.
mRNAs encoding a novel thioredoxin were isolated from pollen RNA of Lolium perenne (LpTrx), Hordeum bulbosum (HbTrx), Phalaris coerulescens (PTrx) and Secale cereale (ScTrx). The cDNAs contain a single ORF of 393 bp encoding a protein of 131 amino acids. The predicted proteins showed highest homology to plant thioredoxins of the h class yet form a distinct subgroup that is characterized by a high level of sequence conservation (95.4-97.7% identity). GenBank searches revealed additional members of this subclass in tomato, soybean, rice and pine. LpTrx and PTrx were expressed as recombinant proteins in Escherichia coli and tested for thioredoxin activity. Both proteins displayed typical thioredoxin activity in the nonspecific insulin reduction assay, however, were not reduced by E. coli NADPH-dependant thioredoxin reductase.  相似文献   

4.
The DNA sequence of the Salmonella typhimurium ahp locus was determined. The locus was found to contain two genes that encode the two proteins (C22 and F52a) that comprise the S. typhimurium alkyl hydroperoxide reductase activity. The predicted sequence of the F52a protein component of the alkyl hydroperoxide reductase was found to be highly homologous to the Escherichia coli thioredoxin reductase protein (34% identity with many conservative substitutions). The homology was found to be particularly striking in the region containing the redox-active cysteines of the thioredoxin reductase molecule, and among the identities were the redox-active cysteines themselves. Aside from the strong similarity to thioredoxin reductase, overall homology between the F52a protein and other flavoprotein disulfide oxidoreductases such as glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase was found to be rather limited, and the conserved active site segment common to the three proteins was not observed within the F52a protein. However, three short segments that have been implicated in FAD and NAD binding were found to be conserved between the F52a protein and the other disulfide reductases. These results suggest that the alkyl hydroperoxide reductase is the second known member of a class of disulfide oxidoreductases which was represented previously by thioredoxin reductase alone; they also allow the putative assignment of several functional domains.  相似文献   

5.
The chloroplastic enzyme NADP-malate dehydrogenase is activated by a reversible thiol/disulfide interchange with reduced thioredoxin. Its target disulfide bridge is considered to be located at the amino terminus. To further substantiate the regulatory role of this disulfide, site-directed mutagenesis has been used to replace each or both of the amino-terminal cysteines of the sorghum leaf NADP-malate dehydrogenase, expressed in Escherichia coli, by serines. A truncation mutant lacking the amino terminus has also been produced. Surprisingly, the mutant proteins still required activation by reduced thioredoxin. However, their activation was almost instantaneous, whereas the native enzyme reached full activity after a 10-20 min preincubation. The 8 1/2 for reduced thioredoxin was decreased 2-fold in the mutants, but their Km values for NADPH and oxaloacetate did not change significantly. The inhibition of activation by NADP and inhibition of activity by thiol-derivatizing agents were also retained. These results are interpreted as an indication that two thioredoxin-dependent reduction steps are involved in NADP-dependent malate dehydrogenase light activation, hence that two disulfides per monomer participate in the process. The overall activation rate would depend on a conformational change following the reduction of the amino-terminal disulfide bridge. The amino terminus also plays a role in the dimerization of the protein.  相似文献   

6.
Stehr M  Lindqvist Y 《Proteins》2004,55(3):613-619
NrdH-redoxins constitute a family of small redox proteins, which contain a conserved CXXC sequence motif, and are characterized by a glutaredoxin-like amino acid sequence but a thioredoxin-like activity profile. Here we report the structure of Corynebacterium ammoniagenes NrdH at 2.7 A resolution, determined by molecular replacement using E. coli NrdH as model. The structure is the first example of a domain-swapped dimer from the thioredoxin family. The domain-swapped structure is formed by an inter-chain two-stranded anti-parallel beta-sheet and is stabilized by electrostatic interactions at the dimer interface. Size exclusion chromatography, and MALDI-ESI experiments revealed however, that the protein exists as a monomer in solution. Similar to E. coli NrdH-redoxin and thioredoxin, C. ammoniagenes NrdH-redoxin has a wide hydrophobic pocket at the surface that could be involved in binding to thioredoxin reductase. However, the loop between alpha2 and beta3, which is complementary to a crevice in the reductase in the thioredoxin-thioredoxin reductase complex, is the hinge for formation of the swapped dimer in C. ammoniagenes NrdH-redoxin. C. ammoniagenes NrdH-redoxin has the highly conserved sequence motif W61-S-G-F-R-P-[DE]67 which is unique to the NrdH-redoxins and which determines the orientation of helix alpha3. An extended hydrogen-bond network, similar to that in E. coli NrdH-redoxin, determines the conformation of the loop formed by the conserved motif.  相似文献   

7.
8.
首次从黑曲霉Aspergillus niger全基因组中克隆出黑曲霉硫氧还原蛋白基因AnTrx,并对其编码蛋白的第33-37位保守区的活性位点实施定点突变C34S、C37S及C34S-C37S,获得相应的3个定点突变基因。将野生型AnTrx及其突变子分别在大肠杆菌Escherichia coli中诱导表达,比浊法测定纯化的各表达产物还原牛胰岛素α与β链之间二硫键的活性。结果表明,AnTrx的3个突变体都不表现明显催化活性。当突变型与野生型AnTrx等量混合后,发现突变型AnTrx-C34S可显著提高野生型AnTrx的催化效率,而突变型AnTrx-C37S却无此功能。由此证明,AnTrx活性结构域的第37位Cys残基上的巯基能参与攻击硫氧还蛋白和底物蛋白所形成的二硫键而释放被还原的底物蛋白,而第34位Cys残基同其他微生物的同一活性域一样参与硫氧化还蛋白与底物的结合。这一结果有助于认识真菌硫氧还蛋白第37位活性位点的作用。  相似文献   

9.
Escherichia coli thioredoxin is a small monomeric protein that reduces disulfide bonds in cytoplasmic proteins. Two cysteine residues present in a conserved CGPC motif are essential for this activity. Recently, we identified mutations of this motif that changed thioredoxin into a homodimer bridged by a [2Fe-2S] iron-sulfur cluster. When exported to the periplasm, these thioredoxin mutants could restore disulfide bond formation in strains lacking the entire periplasmic oxidative pathway. Essential for the assembly of the iron-sulfur was an additional cysteine that replaced the proline at position three of the CGPC motif. We solved the crystalline structure at 2.3 Angstroms for one of these variants, TrxA(CACA). The mutant protein crystallized as a dimer in which the iron-sulfur cluster is replaced by two intermolecular disulfide bonds. The catalytic site, which forms the dimer interface, crystallized in two different conformations. In one of them, the replacement of the CGPC motif by CACA has a dramatic effect on the structure and causes the unraveling of an extended alpha-helix. In both conformations, the second cysteine residue of the CACA motif is surface-exposed, which contrasts with wildtype thioredoxin where the second cysteine of the CXXC motif is buried. This exposure of a pair of vicinal cysteine residues apparently allows thioredoxin to acquire an iron-sulfur cofactor at its active site, and thus a new activity and mechanism of action.  相似文献   

10.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

11.
Anaerobic ribonucleotide reductase provides facultative and obligate anaerobic microorganisms with the deoxyribonucleoside triphosphates used for DNA chain elongation and repair. In Escherichia coli, the dimeric alpha2 enzyme contains, in its active form, a glycyl radical essential for the reduction of the substrate. The introduction of the glycyl radical results from the reductive cleavage of S-adenosylmethionine catalyzed by the reduced (4Fe-4S) center of a small activating protein called beta. This activation reaction has long been known to have an absolute requirement for dithiothreitol. Here, we report that thioredoxin, along with NADPH and NADPH:thioredoxin oxidoreductase, efficiently replaces dithiothreitol and reduces an unsuspected critical disulfide bond probably located on the C terminus of the alpha protein. Activation of reduced alpha protein does not require dithiothreitol or thioredoxin anymore, and activation rates are much faster than previously reported. Thus, in E. coli, thioredoxin has very different roles for class I ribonucleotide reductase where it is required for the substrate turnover and class III ribonucleotide reductase where it acts only for the activation of the enzyme.  相似文献   

12.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

13.
Disruption of the two thioredoxin genes in yeast dramatically affects cell viability and growth. Expression of Arabidopsis thioredoxin AtTRX3 in the Saccharomyces thioredoxin Delta strain EMY63 restores a wild-type cell cycle, the ability to grow on methionine sulfoxide, and H2O2 tolerance. In order to isolate thioredoxin targets related to these phenotypes, we prepared a C35S (Escherichia coli numbering) thioredoxin mutant to stabilize the intermediate disulfide bridged complex and we added a polyhistidine N-terminal extension in order to purify the complex rapidly. Expression of this mutant thioredoxin in the wild-type yeast induces a reduced tolerance to H2O2, but only limited change in the cell cycle and no change in methionine sulfoxide utilization. Expression in the Delta thioredoxin strain EMY63 allowed us to isolate a complex of the thioredoxin with YLR109, an abundant yeast protein related to PMP20, a peroxisomal protein of Candida. No function has so far been attributed to this protein or to the other numerous homologues described in plants, animals, fungi, and prokaryotes. On the basis of the complementation and of low similarity with peroxiredoxins, we produced YLR109 and one of its Arabidopsis homologues in E. coli to test their peroxiredoxins activity. We demonstrate that both recombinant proteins present a thioredoxin-dependent peroxidase activity in vitro. The possible functions of this new peroxiredoxin family are discussed.  相似文献   

14.
NrdH-redoxin is a representative of a class of small redox proteins that contain a conserved CXXC motif and are characterized by a glutaredoxin-like amino acid sequence and thioredoxin-like activity profile. The crystal structure of recombinant Escherichia coli NrdH-redoxin in the oxidized state has been determined at 1.7 A resolution by multiwavelength anomalous diffraction. NrdH-redoxin belongs to the thioredoxin superfamily and is structurally most similar to E. coli glutaredoxin 3 and phage T4 glutaredoxin. The angle between the C-terminal helix alpha3 and strand beta4, which differs between thioredoxin and glutaredoxin, has an intermediate value in NrdH-redoxin. The orientation of this helix is to a large extent determined by an extended hydrogen-bond network involving the highly conserved sequence motif (61)WSGFRP(D/E)(67), which is unique to this subclass of the thioredoxin superfamily. Residues that bind glutathione in glutaredoxins are in general not conserved in NrdH-redoxin, and no glutathione-binding cleft is present. Instead, NrdH-redoxin contains a wide hydrophobic pocket at the surface, similar to thioredoxin. Modeling studies suggest that NrdH-redoxin can interact with E. coli thioredoxin reductase at this pocket and also via a loop that is complementary to a crevice in the reductase in a similar manner as observed in the E. coli thioredoxin-thioredoxin reductase complex.  相似文献   

15.
16.
Escherichia coli thioredoxin is a small disulfide-containing redox protein with the active site sequence Cys-Gly-Pro-Cys-Lys. Mutations were made in this region of the thioredoxin gene and the mutant proteins expressed in E. coli strains lacking thioredoxin. Mutant proteins with a 17-membered or 11-membered disulfide ring were inactive in vivo. However, purified thioredoxin with the active site sequence Cys-Gly-Arg-Pro-Cys-Lys is still able to serve as a substrate for thioredoxin reductase and a reducing agent in the ribonucleotide reductase reaction, although with greatly reduced catalytic efficiency. A smaller disulfide ring, with the active site sequence Cys-Ala-Cys, does not turn over at a sufficient rate to be an effective reducing agent. Strain in the small ring favors the formation of intermolecular disulfide bonds. Alteration of the invariant proline to a serine has little effect on redox activity. The function of this residue may be in maintaining the stability of the active site region rather than participation in redox activity or protein-protein interactions. Mutation of the positively charged lysine in the active site to a glutamate residue raises the Km values with interacting enzymes. Although it has been proposed that the positive residue at position 36 is conserved to maintain the thiolate anion on Cys-32 (Kallis & Holmgren, 1985), the presence of the negative charge at this position does not alter the pH dependence of activity or fluorescence behavior. The lysine is most likely conserved to facilitate thioredoxin-protein interactions.  相似文献   

17.
The active site sequence of T4 thioredoxin, Cys-Val-Tyr-Cys, has been modified in two positions to Cys-Gly-Pro-Cys to mimic that of Escherichia coli thioredoxin. The two point mutants Cys-Gly-Tyr-Cys and Cys-Val-Pro-Cys have also been constructed. The mutant proteins have similar reaction rates with T4 ribonucleotide reductase as has the wild-type T4 thioredoxin. Mutant T4 thioredoxins with Pro instead of Tyr at position 16 in the active site sequence have three to four times lower apparent KM with E. coli ribonucleotide reductase than wild-type T4 thioredoxin. The KM values for these mutant proteins which do not have Tyr in position 16 are thus closer to E. coli thioredoxin than to the wild-type T4 thioredoxin. The bulky tyrosine side chain probably prevents proper interactions to E. coli ribonucleotide reductase. Also the redox potentials of these two mutant thioredoxins are lower than that of the wild-type T4 thioredoxin and are thereby more similar to the redox potential of E. coli thioredoxin. Mutations in position 15 behave more or less like the wild-type protein. The kinetic parameters with E. coli thioredoxin reductase are similar for wild-type and mutant T4 thioredoxins except that the apparent kcat is lower for the mutant protein with Pro instead of Tyr in position 16. The active site sequence of T4 thioredoxin has also been changed to Cys-Pro-Tyr-Cys to mimic that of glutaredoxins. This change does not markedly alter the reaction rate of the mutant protein with T4 ribonucleotide reductase or E. coli thioredoxin reductase, but the redox potential is lower for this mutant protein than for wild-type T4 thioredoxin.  相似文献   

18.
Characterization of Escherichia coli-Anabaena sp. hybrid thioredoxins   总被引:2,自引:0,他引:2  
Thioredoxin is a small redox protein with an active-site disulfide/dithiol. The protein from Escherichia coli has been well characterized. The genes encoding thioredoxin in E. coli and in the filamentous cyanobacterium Anabaena PCC 7119 have been cloned and sequenced. Anabaena thioredoxin exhibits 50% amino acid identity with the E. coli protein and interacts with E. coli enzymes. The genes encoding Anabaena and E. coli thioredoxin were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate hybrid genes, coding for two chimeric thioredoxins. These proteins are designated Anabaena-E. coli (A-E) thioredoxin for the construct with the Anabaena sequence from the N-terminus to the middle of the active site and the E. coli sequence to the C-terminus, and E. coli-Anabaena (E-A) for the opposite construct. The gene encoding the A-E thioredoxin complements all phenotypes of an E. coli thioredoxin-deficient strain, whereas the gene encoding E-A thioredoxin is only partially effective. Purified E-A thioredoxin exhibits a much lower catalytic efficiency with E. coli thioredoxin reductase and ribonucleotide reductase than either E. coli or Anabaena thioredoxin. In contrast, the A-E thioredoxin has a higher catalytic efficiency in these reactions than either parental protein. Reaction with antibodies to E. coli and Anabaena thioredoxins shows that the antigenic determinants for thioredoxin are located in the C-terminal part of the molecule and retain the native conformation in the hybrid proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Plants contain three thioredoxin systems. Chloroplast thioredoxins are reduced by ferredoxin-thioredoxin reductase, whereas the cytosolic and mitochondrial thioredoxins are reduced by NADPH thioredoxin reductase (NTR). There is high similarity among NTRs from plants, lower eukaryotes, and bacteria, which are different from mammal NTR. Here we describe the OsNTRC gene from rice encoding a novel NTR with a thioredoxin-like domain at the C terminus, hence, a putative NTR/thioredoxin system in a single polypeptide. Orthologous genes were found in other plants and cyanobacteria, but not in bacteria, yeast, or mammals. Full-length OsNTRC and constructs with truncated NTR and thioredoxin domains were expressed in Escherichia coli as His-tagged polypeptides, and a polyclonal antibody specifically cross-reacting with the OsNTRC enzyme was raised. An in vitro activity assay showed that OsNTRC is a bifunctional enzyme with both NTR and thioredoxin activity but is not an NTR/thioredoxin system. Although the OsNTRC gene was expressed in roots and shoots of rice seedlings, the protein was exclusively found in shoots and mature leaves. Moreover, fractionation experiments showed that OsNTRC is localized to the chloroplast. An Arabidopsis NTRC knock-out mutant showed growth inhibition and hypersensitivity to methyl viologen, drought, and salt stress. These results suggest that the NTRC gene is involved in plant protection against oxidative stress.  相似文献   

20.
A redox protein gene (PH0178) with high sequence homology to a glutaredoxin from Pyrococcus furiosus and a thioredoxin reductase homologue gene (PH1426) were found in the genome sequence of Pyrococcus horikoshii. These two genes were cloned and the corresponding expressed proteins were characterized. The redox protein from PH0178 had strong thioredoxin-like activity, but no glutaredoxin activity. The protein from PH1426 had some reductase activity against thioredoxin from Escherichia coli as well as the redox protein (PH0178). The protein from PH1426 was a typical, homodimeric flavoprotein. These results indicate that the redox protein (PH0178) is not a glutaredoxin but, rather, a new protein-disulfide oxidoreductase that is involved in a thioredoxin-like system with thioredoxin reductase (PH1426) in P. horikoshii. The redox protein and thioredoxin reductase retained their full activities for over 1h at 100 degrees C. The redox potential of the redox protein was similar to that of thioredoxin from E. coli and lower than that of glutathione. Site-directed mutagenesis studies revealed that the active site of the redox protein corresponds to a CPYC sequence, located in the middle of the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号