首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proline transport in Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells was increased approximately twofold by 0.5 mm dibutyryl cAMP (dbcAMP), and the increase was observed whether transport was assayed in the presence or absence of cycloheximide. Two days of exposure to the analog was required for maximum stimulation. Increased proline transport contributed almost entirely to the increased incorporation of [14C]proline into noncollagen protein but for only 13% of the increased incorporation into collagen of dbcAMP-treated Ki-3T3 cells. Proline transport was further characterized using an assay system containing 0.1 mm cycloheximide, which did not affect transport over a 30-min period. The Km for proline was decreased from 6.5 to 3.4 mm by dbcAMP treatment of Ki-3T3. Proline transport in Ki-3T3 proceeds almost entirely via the A system, and the effect of dbcAMP appears to be on this system specifically since glycine and glutamine transport, which are heterogeneous, were not affected but transport of N-methylaminoisobutyrate, a specific A system substrate, was increased by dbcAMP treatment. Although 0.5 mm butyrate increased proline transport in Ki-3T3 cells to a similar degree as dbcAMP, the effect of the latter appeared related to its action as a cAMP analog since N6-monobutyryl cAMP, having a stable butyryl group, and 8-bromo-cAMP also increased proline transport while dbcGMP did not. The rate of proline transport in normal BALB 3T3 cells was only 30–40% lower than that of Ki-3T3 cells at various growth stages, and dbcAMP and 8-bromo-cAMP treatment also increased proline transport in the normal cells. The results of these studies suggest that dbcAMP and other cAMP analogs induce the synthesis of an altered component of the A system for amino acid transport and that the effect of these compounds is unrelated to the effect of transformation on proline transport.  相似文献   

2.
Retinoic acid affects 3T6 and 3T3 cells by inhibiting growth, causing a morphological change and increasing cell-to-substratum adhesiveness. Retinoic acid does not exert such effects on virus-transformed 3T3SV cells. Retinoic acid treatment of 3T6 cells causes a concentration-dependent increase in generation time and a reduction in saturation density. Analysis of cell surface proteins shows that a high molecular weight band of 230 000 D, corresponding to the position of the LETS glycoprotein, is more intensely labeled by iodination of cells treated with retinoic acid compared to control cells. Retinoic acid substantially stimulates the incorporation of 35SO4 into cell-associated glycosaminoglycans and causes a less dramatic increase in glycosaminoglycans excreted into the medium. The relationship between the increase in these cell surface components and the enhanced adhesiveness is discussed. A retinoic acid binding protein is detectable in the cytosol of 3T6 and 3T3 cells but not in 3T3SV cells, suggesting that the action of retinoids on these cells is mediated via this protein.  相似文献   

3.
Two sets of parent and virus-transformed cell lines (3T3 vs SV-3T3; BHK vs PY-BHK) were compared with respect to the extent of divalentcation independent aggregation which previously has been shown to depend upon the interaction of endogenous hyaluronate with specific receptors on the cell surface. When measured under conditions of physiological ionic strength, a significant amount of hyaluronidase-inhibitable aggregation was found in the virus-transformed cell lines (SV-3T3 and PY-BHK) but not in their parent counterparts (3T3 and BHK). However, when the same experiment was performed in a high ionic strength solution (0.5 M NaCl), the hyaluronidase inhibitable aggregation was detected in all of the cell lines. The differences in the aggregation between the various cell lines was also reflected in the binding of [3H]hyaluronate. In physiological saline, the virus-transformed cells bound greater amounts of hyaluronate (higher Bmax) with a greater affinity (lower kd) than did their untransformed counterparts. Increasing the ionic strength to 0.5 M NaCl increased the binding of [3H]hyaluronate by each cell line; however, the relative differences between the cell lines remained. These results indicate that variations in the ability of the cells to bind hyaluronate can partially account for the differences between the parent and the virus-transformed cells with respect to their ability to aggregate.  相似文献   

4.
B Peterkofsky  W B Prather 《Cell》1974,3(3):291-299
Growth of Kirsten sarcoma virus-transformed BALB 3T3 (Ki-3T3) cells in the presence of dibutyryl cyclic AMP (dbcAMP) resulted in alteration of morphology, inhibition of growth, and increased collagen synthesis as measured by incorporation of 14C-proline into collagenase-digestible protein. There was an increase in incorporation of 14C-proline into collagen when expressed not only as dpm per μg DNA or protein, but also as the relative rate of collagen synthesis compared to total cellular protein synthesis, which suggests that an alteration in amino acid transport cannot totally account for the increased incorporation into collagen. The three properties studied were all affected over a concentration range of 0.10 to 1.0 mM dbcAMP, but each had a slightly different dose-response curve. At 0.5 mM dbcGMP or sodium butyrate, there was no affect on growth, morphology, or the relative rate of collagen synthesis indicating specificity for the dibutyryl analog of cAMP. Growth of the parent line, BALB 3T3, was inhibited by 0.5 mM dbcAMP, but the relative rate of collagen synthesis did not increase. These results suggest that although growth, morphology, and collagen synthesis are altered in transformed cells so that they more closely resemble those of the parent line, each property may be regulated independently.  相似文献   

5.
In EGFR-T17 cells, which express high levels of the epidermal growth factor (EGF) receptor, addition of a saturating dose of EGF (10 nM) leads to an increase in Ins(1,4,5)P3/diacylglycerol and also to cytosolic calcium [Ca2+]i due to both intracellular redistribution and influx from extracellular medium. Pretreatment of cells with cis -unsaturated nonesterified fatty acids such as oleic acid (1 to 100 μM) inhibited EGF-stimulated Ins(1,4,5)P3 generation and Ca2+ release from intracellular stores. Furthermore, such a treatment completely suppress Ca2+ influx in a dose-dependent manner. At doses capable of suppressing such early signals, oleic acid did not alter the process of EGF-mediated internalization of the EGF/EGF-receptor complex, suggesting that [Ca2+]i rise did not mediate receptor internalization. EGF-induced cell proliferation assessed by either thymidine incorporation into DNA, direct cell counting, and microscopic observation was not altered by oleic acid, at doses able to block EGF-mediated early signals. In conclusion, suppression of Ins(1,4,5)P3 generation and [Ca2+]i rises by oleic acid did not alter EGF-receptor internalization nor EGF-induced cell mitosis. Such results suggest that [Ca2+]i rise is not instrumental for EGF-stimulated cell proliferation.  相似文献   

6.
Keyhole limpet hemocyanin (KLH)-primed lymph node cell (LNC) populations were incubated with various amounts of KLH and the cellular incorporation of tritiated thymidine ([3H]TdR) or tritiated N6, O2′ dibutyryl cyclic AMP ([3H]DbcAMP) was determined. T LNC responded more vigorously than did complement receptor lymphocytes (CRL), i.e., B cells, at all KLH concentrations, during all time intervals examined, and in the presence or absence of normal rabbit serum (NRS). The depletion of adherent cells from KLH-primed LNC resulted in no significant decrease in KLH-induced incorporation of either [3H]TdR or [3H]DbcAMP in any of the LNC populations. Thus it appeared that variation among LNC populations in the incidence of macrophages did not account for the marked variation in their responses. Cultures containing equal numbers of T and CRL were induced to incorporate more [3H]TdR or [3H]DbcAMP than either population cultured separately or the sum of their individual responses. It was concluded that KLH-induced incorporation of these substances into primed, isolated LNC, was primarily manifested in the T-cell population. The synergism seen in cultures containing mixtures of T and CRL suggested that B cells are induced to incorporate [3H]TdR or [3H]DbcAMP in the presence of antigen and T-cell product(s). KLH-induced incorporation of [3H]TdR into KLH-primed LNC was inhibited by cholera enterotoxin (CT) and DbcAMP as previously reported. However, CT or DbcAMP inhibited this incorporation into T LNC to a greater extent than into CRL or unfractionated LNC.  相似文献   

7.
Experiments were performed to determine if animal cells in culture possess specific mechanisms to repair surface molecules damaged by enzymes. The surface membranes of a primary cell culture, chick fibroblasts, a permanent hamster cell line, BHK21/C13, and its virally transformed counterpart, C13/B4 were damaged by exposure to trypsin or to neuraminidase. Following digestion with trypsin, the incorporation of radioactive amino acids or sugars into purified surface membrane of cells was monitored. No differences were noted in rates of incorporation when control and trypsin-damaged cells were compared. Neuraminidase damage to the surface of BHK21/C13 and C13/B4 cells was evidenced by altered gel filtration profiles of surface glycopeptides, i.e., delayed elution because of reduction in size. By labelling cells with 14C-L-fucose prior to neuraminidase treatment and following the incorporation of 3H-L-fucose into cell surface glycopeptides after neuraminidase digestion, we were able to monitor the synthesis and turnover of fucose-containing glycopeptides in the same cells. Gel filtration profiles indicated that little or no desialylated glycoproteins were resialylated (repaired) by specific replacement of sialic acid. Comparing neuraminidase-digested and control cells we observed no difference in rates of 3H-L-fucose incorporation or of 14C-L-fucose loss from these cells; nor did we find differences in the rate of incorporation of isotopic glucosamine into sialic acid. Neuraminidase treatment failed to alter the rate of cell growth or the pattern of isotopic incorporation into various cell surface components. These results support the suggestion that return of sialic acid (repair) was effected by turnover which serves as a non-specific repair mechanism to replace damaged cell surface molecules (Warren and Glick '68; Warren, '69).  相似文献   

8.
Agents which block T cell K+ currents can prohibit both proliferative and effector cell functions in T cells activated by mitogens or phorbol esters. This study examined the effects of some of these blocking agents on the immune responsiveness of guinea pig myelin basic protein (GPMBP)-reactive Lewis rat T lymphocytes, which are capable of mediating the adoptive transfer of experimental allergic encephalomyelitis (EAE), an accepted animal model for multiple sclerosis. Both the proliferative functions (DNA synthesis and cell blastogenesis) and the EAE transfer activities of GPMBP-reactive lymphocytes were examined following GPMBP-induced activation in the presence of agents shown to block the outwardly rectifying K+ current in these cells. At concentrations which completely inhibited DNA synthesis, as measured by [3H]thymidine incorporation, and cell blastogenesis, tetraethylammonium (TEA), 4-aminopyridine (4-AP) and methoxyverapamil (D600) completely blocked the subsequent adoptive transfer of EAE into naive syngeneic Lewis rats. The concentrations at which these blockers produced a 50% reduction in DNA synthesis were estimated to be 16, 1.6 and 32 µM for TEA, 4-AP and D-600, respectively, which were roughly equivalent to the EC50 to block the K+ current. Apamine, a potent Ca2+-activated K+ channel blocker, at a concentration several orders of magnitude higher than is necessary to block Ca2+-activated K+ channels, reduced the maximal K+ conductance in GPMBP-reactive T cell K+ channels by about 20%, but did not alter either [3H]thymidine incorporation or the adoptive transfer of EAE. These results indicate that delayed rectifier K+ channel blockers may prevent the activation of GPMBP-reactive T cells, thus prohibiting encephalitogenic effector cell functions.  相似文献   

9.
Fibroblasts from patients with homozygous familial hypercholesterolemia (FH), a disease characterized by accelerated atherogenesis, are known to lack functional low-density-lipoprotein receptors, which ultimately results in increased cholesterol biosynthesis in the cultured cells. [14C]Acetate incorporation in these cells was compared to that of normal fibroblasts and to fibroblasts from patients with Down's syndrome, a disease in which atherosclerosis is rare. Total [14C]acetate incorporation did not differ significantly between normal and Down's fibroblasts, nor did its partitioning into the hexane-extractable and aqueous fractions of the cell hydrolysates. [14C]Acetate incorporation was much greater in FH cells in both the aqueous and hexane-extractable fractions. Preincubation in fetal bovine serum increased acetate incorporation only by FH cells, while 50 μg low-density lipoprotein/ml medium depressed acetate incorporation in all three groups. A C27 sterol, identified by gas chromatography-mass spectrometry as a probable isomer of cholesterol, was present in small amounts in FH fibroblasts, but was not detectable in the normal or Down's cells. The absolute amounts of [14C]acetate incorporated into the non-sterol lipids were greater in the FH fibroblasts, indicating that these cells may have to synthesize, in addition to cholesterol, other required cellular lipids which are delivered to the normal cells by low-density lipoproteins.  相似文献   

10.
We have found that mutations in phage T4 genes 41 (five of five) and 61 (three of three) cause resistance to the folate analogue pyrimethamine that inhibits T4 dihydrofolate (FH2) reductase. These genes code for subunits of a T4 primase and are part of a putative T4 replication complex. In contrast to many previously isolated folate analogue-resistant (Far) T4 mutants, these T4 primase mutants do not overproduce FH2 reductase nor do they alter its primary structure. A new mutant with a single lesion in gene 41 was isolated which proved resistant to the folate analogue at 30° and was lethal at 42°. This mutant induced normal levels of FH2 reductase (encoded by the frd gene) and appeared to have normal expression of other T4 genes at 30°. Like other mutations in gene 41, tsP129 reduced phage-induced DNA synthesis to about 15% that of wild-type T4 as measured by thymidine incorporation under restrictive conditions. Double mutants carrying mutations in genes 41 and 61, 41 and frd or 61 and frd showed allele-specific suppression suggesting that the products of these genes interact. We suggest that abnormal interactions between components of the replication complex and a DNA precursor synthesizing complex cause folate analog resistance by allosterically altering the T4 FH2 reductase.  相似文献   

11.
Human peripheral blood lymphocytes were separated by a combination of rosette formation with sheep erythrocytes and differential density centrifugation into subpopulations of rosette positive (T-enriched) cells and rosette negative (T depleted) cells. These were then tested in vitro for the production of macrophage migration inhibitory factor (MIF) and for incorporation of 3H-thymidine in response to specific antigens. Both T enriched and T depleted cell populations produced MIF but only T enriched cells exhibited significant antigen-induced 3H-thymidine incorporation. These findings using a T cell surface marker as the basis for cell separation, a technique which should not alter the B cell surface, confirm an earlier report in which human cells were separated on the basis of surface immunoglobulin, a B cell marker.  相似文献   

12.
Chemical inhibition of the glycolate pathway in soybean leaf cells   总被引:19,自引:15,他引:4       下载免费PDF全文
Isolated soybean (Glycine max [L.] Merr.) leaf cells were treated with three inhibitors of the glycolate pathway in order to evaluate the potential of such inhibitors for increasing photosynthetic efficiency. Preincubation of cells under acid conditions in α-hydroxypyridinemethanesulfonic acid increased 14CO2 incorporation into glycolate, but severely inhibited photosynthesis. Isonicotinic acid hydrazide (INH) increased the incorporation of 14CO2 into glycine and reduced label in serine, glycerate, and starch. Butyl 2-hydroxy-3-butynoate (BHB) completely and irreversibly inhibited glycolate oxidase and increased the accumulation of 14C into glycolate. Concomitant with glycolate accumulation was the reduction of label in serine, glycerate, and starch, and the elimination of label in glycine. The inhibitors INH and BHB did not eliminate serine synthesis, suggesting that some serine is synthesized by an alternate pathway. The per cent incorporation of 14CO2 into glycolate by BHB-treated cells or glycine by INH-treated cells was determined by the O2/CO2 ratio present during assay. Photosynthesis rate was not affected by INH or BHB in the absence of O2, but these compounds increased the O2 inhibition of photosynthesis. This finding suggests that the function of the photorespiratory pathway is to recycle glycolate carbon back into the Calvin cycle, so if glycolate metabolism is inhibited, Calvin cycle intermediates become depleted and photosynthesis is decreased. Thus, chemicals which inhibit glycolate metabolism do not reduce photorespiration and increase photosynthetic efficiency, but rather exacerbate the problem of photorespiration.  相似文献   

13.
14.
The long-term exposure of mice to superantigen SEA using a mini-osmotic pump (SEA pump) induced a long-lasting expansion of Vβ3+CD4+ T cells with T helper (Th) 2 cell-type properties. Removal of the SEA pump 10 days after pump implantation did not significantly alter the level of Vβ3+CD4+ T cell expansion/maintenance. Furthermore, CFSE-labeled CD4+ T cells failed to divide when transferred to post-implantation day 15 mice. Thus, CD4+ T cells appeared to survive for at least 30 days in the absence of a sufficient amount of antigen to trigger cell division. STAT6 deficient mice, in which Th2 cell development is largely impaired, also exhibited a protracted cell expansion, similar to that observed in normal mice, suggesting that the Th2 cell property is dispensable for the maintenance of Vβ3+CD4+ T cell expansion. The expanded CD4+ T cells on post-implantation day 26 were arrested in the G0/G1 phase of the cell cycle and showed a lower level of cell division upon restimulation. The Cdk inhibitor p27Kip1 was highly expressed, and Cdk2 was downregulated. Moreover, the CD4+ T cells were resistant to in vitro apoptosis induction in parallel with their level of Bcl-2 expression. Collectively, the Vβ3+CD4+ T cells appeared to develop into long-lived memory T cells with cell cycle arrest upon long-term exposure to SEA.  相似文献   

15.
Phosphatidylinositol (PI) synthesis and its role in controlling the cell cycle has been investigated using fibroblasts and liver cells in culture. PI synthesis as measured by incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material during 0–60 min after serum or growth factor stimulation of serum-starved cells is increased in primary fetal rat liver cells, rat embryo fibroblasts, and 3T3 mouse cells. In contrast, growth stimulation of 3T3 cells and hepatocytes rendered quiescent in G1 by amino acid starvation is not accompanied by increased incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material. This suggests that those cells might be arrested at a different point in G1 than cells arrested by serum depletion. Inhibition of PI synthesis by δ-hexachlorocyclohexane (HCH), a steric analog of myo-inositol, during early times (e.g., 0–4 hr) after growth stimulation, reversibly blocks initiation of DNA synthesis in 3T3 cells. The results support the idea that increased PI synthesis in response to growth stimulation in the cell types studied here is a prerequisite for progression through G1 and subsequent entry into S phase.  相似文献   

16.
The experiments showed that incorporation of S from the sulphate in the medium into normal cells of Scenedesmus was enhanced by light, relatively most in the case of lipid S and least in the inorganic sulphate fraction. The effects of light were, generally, increased by the presence of CO2 and nitrogen salts. CO2 did not significantly alter the proportions between the fractions, but the presence of nitrogen increased the formation of protein S more than the synthesis of S-containing lipids.—It is suggested that lipid S is formed as a “sink”, when a step between sulpbite and -SH becomes increasingly rate-limiting in the overall reduction of sulphate. Furthermore, incorporation as SO42? and as lipid S may be regulated by more or less independent processes.  相似文献   

17.
Summary Whilst the significance of the phosphoinositide cycle in the activation of developmental events by extra-cellular signals is well established, the involvement of the phosphatidylcholine (PC) cycle is a matter just emerging. In the present study, the metabolism of phosphatidylcholine in early metamorphosis of Hydractinia echinata (Coelenterata; Hydrozoa) was investigated by incubation of planula larvae with 3H-choline, extraction of the metabolites and isolation of the metabolites by thin-layer chromatography (TLC). Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), acetylcholine and glycerophosphocholine were the labelled metabolites. Induction of metamorphosis did not stimulate an increased incorporation of choline into PC. In larvae preincubated with 3H-choline to a steady state level of incorporation, a significant transient elevation of the radioactive label in LPC was observed 90 min after addition of metamorphosis stimulating agents. LPC probably derived from PC by the action of a phospholipase A2 (PLA2). LPCs from bovine and soybean origin as well as isolated larval LPC did not influence metamorphosis. PLA2 from bee venom promoted Cs+-induced metamorphosis but did not influence phorbol ester-induced metamorphosis. The data suggest that a PLA2 is activated during metamorphosis. This PLA2 activation does not occur in those putative receptor cells which receive the primary external inducing stimulus but in the many larval cells which resume proliferation or differentiation in response to a second, internally propagated signal. Offprint requests to: T. Leitz  相似文献   

18.
The toxicity of 3H-5-iodo-2′-deoxyuridine (3H-IUdR) was evaluated by injecting tumor-bearing C3H mice with different concentrations of ethanol (the solvent), different doses of tritium tagged onto either IUdR or thymidine and different chemical doses of IUdR, and then measuring the 3H-IUdR incorporation into duodenal and mammary tumor DNA as well as the cellular kinetics of duodenal crypt cells. Ethanol (37% or less, 0.2 ml/mouse) does not significantly inhibit IUdR incorporation into DNA, and the incorporation after a tritium dose of 75 μCi 3H-IUdR/mouse (about 3 μCi/g body weight) is not less than the incorporation following an injection of 25 μCi 3H-IUdR/mouse when the IUdR dose is below 0.005 μmole per mouse. The toxic effects are primarily due to chemical toxicity from IUdR per se. IUdR, at doses of 0.2 μmoles per mouse does inhibit IUdR incorporation into duodenal and tumor DNA, and the duodenal labeling index and the fraction of labeled mitoses are significantly reduced when 0.013 μmole IUdR per mouse is injected. Also some of the duodenal cells containing IUdR apparently undergo only one post-labeling division and the generation time (Tc) of the cells containing IUdR (25 μCi 3H-IUdR/mouse) is 15.3 hr as compared to 13.3 hr for cells labeled with 3H-T (75 μCi/mouse). This increase in Tc is probably not statistically significant; nevertheless, these results do indicate that one must be exceedingly cautious when using 3H-IUdR as a radiotracer for studies concerned with in vivo cellular kinetics and, at least for C3H mice, the dose should be less than 0.01 μmole per 25 g mouse.  相似文献   

19.
Summary Chronic reserpine treatment of animals, an experimental model for cystic fibrosis (CF), results in generalized exocrinopathy, impaired pancreatic secretion, and decreased pancreatic content of amylase. The mechanisms of altered acinar function and decreased amylase content in both CF and the reserpine-treated rat are unknown. To examine this alteration, the rate of [3H]phenylalanine (phe) incorporation into cellular protein was determined in pancreatic acinar cells after reserpine treatment of rats in vivo (7 d) and of cells in vitro (1 to 24 h). Acinar cells isolated from control, chronic reserpine-treated, and pair-fed rats were incubated in vitro with 0, 30, 50, or 100 μM reserpine. Reserpine treatment in vitro for 24 h of acinar cells from control rats significantly decreased amylase activity (20 to 70%), an effect similar to that of reserpine treatment in vivo. In vivo, reserpine treatment decreased [3H]phe incorporation (disintegrations per minute per milligram protein) 56% in freshly isolated cells, but did not alter intracellular specific activity (disintegrations per minute per nanomole phe, SA) of [3H]phe. Reserpine treatment (30 and 50 μM) in vitro for 1 h also decreased [3H]phe incorporation by freshly isolated cells from control (53 to 85%) and pair-fed (40 to 68%) rats. Reserpine treatment for 24 h in vitro significantly decreased [3H]phe incorporation by cells from control (82 and 98%), pair-fed (80 and 95%), and chronic reserpine-treated (90 and 97%) rats as compared with cells from respective in vivo treatments cultured with no reserpine. In vitro reserpine treatment also decreased the intracellular SA of [3H]phe in freshly isolated cells from control (14 and 36%) and pair-fed (35 and 39%) rats and in cultured cells from control (11 and 86%), pair-fed (60 and 88%), and chronic reserpine-treated (49 and 76%) rats. However, these alterations of SA by reserpine did not account for the decreased incorporation of [3H]phe into acinar protein, which remained significantly lower (70 to 88%) when expressed as total phe incorporation. These results suggest (a) that reserpine acts directly on acinar cells to alter function and (b) that the ability of the pancreas to synthesize digestive enzymes may be impaired in this model of cystic fibrosis. This study was supported in part by the Cystic Fibrosis Foundation, Bethesda, MD.  相似文献   

20.
Prostaglandin F (PGF) did not alter the in vitro biosynthesis of progesterone by slices of luteinized rat ovaries when used in concentrations from 1 to 10,000 ng/ml of incubation medium; likewise, PGF did not affect the incorporation of acetate-1-14C into progestins. PGF, 15-keto PGF, and PGE1 did not alter the biosynthesis of progesterone by luteinized rat ovaries; PGE2 inhibited the production of progesterone when used at a concentration of 10 μg/ml, but not at lower doses. PGF in combination with luteinizing hormone (LH) enhanced the metabolism of progesterone to 20α-hydroxypregn-4-en-3-one in luteinized rat ovaries. Interestingly, PGF, at a high concentration of 10 μg/ml, did stimulate progesterone biosynthesis by slices of ovarian tissue from immature rats hormonally primed to simulate “pseudopregnancy,” suggesting a steroidogenic action of prostaglandins on the ovarian follicular or interstitial cell. PGF (10 μg/ml) did not stimulate the in vitro biosynthesis of progesterone or 20α-hydroxypregn-4-en-3-one by slices of rabbit corpora lutea or rabbit ovarian interstitial tissue. It is concluded that prostaglandins do not stimulate progestin biosynthesis in rat luteal tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号