首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arrestin binding to rhodopsin is one of the major mechanisms of termination of photoresponses in both vertebrates and invertebrates. Here we report the cDNA cloning and characterization of a 48-kDa visual arrestin from squid (Loligo pealei). The cDNA encoded a protein that had 56-64% amino acid sequence similarity to reported arrestin sequences. This protein does not encode any distinct modular domains but contains five fingerprint regions that have been identified within arrestins. Antibodies raised to the recombinant arrestin protein detected arrestin expression only in the eye and recognized a doublet in photoreceptor membranes, representing unphosphorylated and phosphorylated arrestin. In squid eye membranes, arrestin was phosphorylated in a Ca2+-dependent manner and this phosphorylation was inhibited by antibodies raised against squid rhodopsin kinase, but not by inhibitors of protein kinase C or calmodulin kinase. Addition of purified squid rhodopsin kinase to washed rhabdomeric membranes resulted in phosphorylation of rhodopsin, and arrestin was also phosphorylated when calcium was present. This is the first report of a rhodopsin kinase phosphorylating an arrestin substrate, and suggests a dual role for this kinase in the inactivation of the squid visual system.  相似文献   

2.
The binding of arrestin to rhodopsin is initiated by the interaction of arrestin with the phosphorylated rhodopsin C-terminus and/or the cytoplasmic loops, followed by conformational changes that expose an additional high-affinity site on arrestin. Here we use an arrestin mutant (R175E) that binds similarly to phosphorylated and unphosphorylated, wild-type rhodopsin to identify rhodopsin elements other than C-terminus important for arrestin interaction. R175E-arrestin demonstrated greatly reduced binding to unphosphorylated cytoplasmic loop mutants L72A, N73A, P142A and M143A, suggesting that these residues are crucial for high-affinity binding. Interestingly, when these rhodopsin mutants are phosphorylated, R175E-arrestin binding is less severely affected. This effect of phosphorylation on R175E-arrestin binding highlights the co-operative nature of the multi-site interaction between arrestin and the cytoplasmic loops and C-terminus of rhodopsin. However, a combination of any two mutations disrupts the ability of phosphorylation to enhance binding of R175E-arrestin. N73A, P142A and M143A exhibited accelerated rates of dissociation from wild-type arrestin. Using sensitivity to calpain II as an assay, these cytoplasmic loop mutants also demonstrated reduced ability to induce conformational changes in arrestin that correlated with their reduced ability to bind arrestin. These results suggest that arrestin bound to rhodopsin is in a distinct conformation that is co-ordinately regulated by association with the cytoplasmic loops and the C-terminus of rhodopsin.  相似文献   

3.
To elucidate the quenching mechanism of phototransduction in vertebrate cone photoreceptors, a cDNA clone encoding cone specific arrestin (cArr) was isolated from a bovine retinal cDNA library using a human cArr cDNA probe. Affinity-purified anti-peptide antibody specific to cArr was prepared. Immunohistochemical staining displayed specific labeling of cArr in cone photoreceptors and immunoblotting identified a 46 kDa protein band. We purified cArr from bovine retinas by sequential column chromatography using DEAE-cellulose, gel filtration and mono Q columns. Binding studies revealed no binding of cArr to rhodopsin regardless of whether it was bleached and/or phosphorylated. cArr also failed to bind to heparin-Sepharose under conditions which rod arrestin (rArr) bound to the column. The present data suggest that cArr may play a role in the quenching of phototransduction in cone photoreceptors and that its activity therein is different to that of rArr.  相似文献   

4.
Ca2+-dependent protein kinases (CDPKs) play an important role in plant signal transduction. Protein kinase(s) activities induced by 5°C cold stress in rice (Oryza sativa L.) seedlings were investigated in both leaf and stem tissues in an early (up to 45 min) and late (up to 12 h) response study. The leaf had 37-, 47- and 55-kDa protein kinase activities, and the stem had 37-, 47- and 55-kDa protein kinase activities. A 16-kDa protein showed constitutive kinase activity in the rice seedling leaf and stem. It was further identified that the 47-kDa protein kinase activity induced by cold in both the cytosolic and membrane fractions of the stem was strictly Ca2+-dependent. This CDPK activitiy increased in the presence of the Ca2+ ionophore A23187 in stem segments, whereas it was decreased by the Ca2+ channel blocker, LaCl3, and the Ca2+ chelator, EGTA. The general protein kinase inhibitor, staurosporine, completely inhibited this CDPK activity in vitro, and both W7, a calmodulin antagonist, and H7, a protein kinase C inhibitor, could only partially decrease this activity. The protein phosphatase inhibitor, okadaic acid, increased CDPK activity. This CDPK activity was also induced by salt, drought stress and the phytohormone abscicic acid. Among the 18 rice varieties tested, this cold-induced 47-kDa CDPK activity was stronger in the cold-tolerant varieties than in the sensitive ones. Received: 13 August 1999 / Accepted: 24 January 2000  相似文献   

5.
Visual arrestin inactivates the phototransduction cascade by specifically binding to light-activated phosphorylated rhodopsin. This study describes the combined use of insertional mutagenesis and immunochemical approaches to probe the structural determinants of arrestin function. Recombinant arrestins with insertions of a 10-amino acid c-Myc tag (EQKLISEEDL) were expressed in yeast and characterized. When the tag was placed on the C terminus after amino acid 399, between amino acids 99 and 100 or between residues 162 and 163, binding to rhodopsin was found to be very similar to that of wild-type arrestin. Two stable mutants with Myc insertions in the 68-78 loop were also generated. Binding to rhodopsin was markedly decreased for one (72myc73) and completely abolished for the other (77myc78). Limited proteolysis assays using trypsin in the absence or presence of heparin were performed on all mutants and confirmed their overall conformational integrity. Rhodopsin binding to either 162myc163 or 72myc73 arrestins in solution was completely inhibited in the presence of less than a 2-fold molar excess of anti-Myc antibody relative to arrestin. In contrast, the antibody did not block the interaction of the 399myc or 99myc100 arrestins with rhodopsin. These results indicate that an interactive surface for rhodopsin is located on or near the concave region of the N-domain of arrestin.  相似文献   

6.
1. Two cyclic AMP independent protein kinases phosphorylating preferentially acidic substrates have been identified in soluble extract from human, rat and pig thyroid glands/ Both enzymes were retained on DEAE-cellulose. The first enzyme activity eluted between 60 and 100 mM phosphate (depending on the species), phosphorylated both casein and phosvitin and was retained on phosphocellulose; this enzyme likely corresponds to a casein kinase already described in many tissues. The second enzyme activity eluted from DEAE-cellulose at phosphate concentrations higher than 3000 mM, phosphorylated only phosvitin and was not retained on phophocellulose. These enzymes were neither stimulated by cyclic AMP, cyclic GMP and calcium, nor inhbiited by the inhibitor of the cyclic AMP dependent protein kinases. 2. The second enzyme activity was purified from pig thyroid gland by the association of affinity chromatography on insolubilized phosvitin and DEAE-cellulose chromatography. Its specific activity was increased by 8400. 3. The purified enzyme (phosvitin kinase) was analyzed for biochemical and enzymatic properties. Phosvitin kinase phosphorylated phosvitin with an apparent Km of 100 μg/ml; casein, histone, protamine and bovine serum albumin were not phosphorylated. The enzyme utilized ATP as well as GTP as phosphate donor with an apparent Km of 25 and 28 μM, respectively. It had an absolute requirement for Mg2+ with a maximal activity at 4 mM and exhibited an optimal activity at pH 7.0. The molecular weight of the native enzyme was 110 000 as determined by Sephacryl S300 gel filtration. The analysis by SDS-polyacrylamide gel electrophoresis revealed a major band with a molecualr weight of 35 000 suggesting a polymeric structure of the enzyme.  相似文献   

7.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

8.
Phosphorylation and dephosphorylation of ribosomal proteins have been suggested to participate in the regulation of protein synthesis in eukaryotic organisms. The present research focuses on the purification and partial characterization of a protein kinase from maize ribosomes that specifically phosphorylates acidic ribosomal proteins. Ribosomes purified from maize axes were used as the enzyme source. Purification of ribosomes was performed by centrifugation through a 0.5 M sucrose, 0.8 M KCl cushion. A protein kinase activity present in this fraction was released by extraction with 1.5 M KCl and further purified by diethylaminoethyl cellulose column chromatography. A peak containing protein kinase activity was eluted around 400 m M KCl. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one band of 38 kDa molecular mass, which cross-reacted in a western blot with antibodies raised against proteins from the large ribosomal subunit. This enzyme specifically phosphorylates one of the acidic ribosomal proteins (P2). Its activity is inhibited by Ca2+ and Zn2+ and is activated by Mg2+, polylysine and spermine. The relevance of this protein kinase in reinitiating the protein synthesis process during germination is discussed.  相似文献   

9.
10.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

11.
The isolation and characterization of homogeneous arginine kinase from the cockroach is reported. The purification protocol produces 6.6 mg of pure enzyme from 6.8 g of whole cockroach. The purified enzyme cross-reacts with a heterologous antibody and monoclonal antibody against arginine kinase from the shrimp. Both antibody preparations also cross-react with extracts from several species known to contain monomeric arginine kinase, but fail to react with extracts from organisms containing dimeric arginine kinase. Cockroach arginine kinase has a molecular mass of approximately 43,000 determined from measurements by gel filtration and gel electrophoresis. Compared with other arginine kinases, the enzyme from the cockroach is relatively thermostable (50% activity retained at 50 degrees C for 10 min) and has a pH optima of 8.5 and 6.5-7.5, for the forward and reverse reactions, respectively. Treatment with 5,5'dithiobis[2-nitrobenzoic acid] indicates that arginine kinase has a single reactive sulfhydryl group and, interestingly, the reaction is biphasic. The Michaelis constants for the phosphagen substrates, arginine: 0.49 mM, phosphoarginine: 0.94 mM, and nucleotide substrates MgATP: 0.14 mM, MgADP: 0.09 mM, are in the range reported for other arginine kinases. A 1% solution of pure enzyme has an absorbance of 7.0 at 280 nm. Calculations based on circular dichroic spectra indicate that arginine kinase from the cockroach has 12% alpha-helical structure. The intrinsic protein fluorescence emission maximum at 340 nm suggests that tryptophan residues are below the surface of the protein and not exposed to solvent. Arginine kinase from the cockroach and shrimp are known to be deleterious immunogens towards humans. The availability of pure protein, its characterization and potential regulation of activity, will be useful in developing agents to control the cockroach population and its destructive role in agriculture and human health.  相似文献   

12.
The GA-signal transduction pathways downstream to the Gα protein in rice seedling root were investigated using in-gel kinase assay and in vitro protein phosphorylation techniques with a Gα protein defective mutant, d1. A 50-kDa protein kinase was detected downstream to Gα protein in the membrane fraction of rice seedling roots using an in-gel kinase assay with histone III-S as a substrate. The activity of a 50-kDa protein kinase increased in the wild-type rice by gibberellin (GA3) treatment, but did not change in the d1 mutant. This protein kinase activity was inhibited by the Ca2+ chelator ethyleneglycol-bis-(beta-aminoethylether)-N,N,N 1,N 1-tetraacetic acid (EGTA), protein kinase inhibitors, staurosporine and H7, and calmodulin antagonist, trifluoperazine, suggesting that the 50-kDa protein kinase is a putative plant Ca2+-dependent protein kinase (CDPK). The activity of the 50-kDa putative CDPK reached its highest level at 3 h after GA3 treatment and then gradually declined with time. In order to identify the endogenous substrate for 50-kDa putative CDPK, two-dimensional polyacrylamide gel electrophoresis followed by in vitro protein phosphorylation was carried out. The phosphorylation activity of an endogenous protein PP30, identified as an unknown protein having molecular weight 30 kDa and isoelectric point 5.8 was increased in the wild-type rice by GA3 treatment, compared with the d1 mutant. The addition of GA3 treated membrane fraction, which predominantly represent a 50-kDa putative CDPK further increased the phosphorylation of PP30. Almost similar to GA3 treatment, phosphorylation activity of PP30 was also increased by the treatment with cholera toxin in the wild-type rice but not in d1 mutant. These results suggest that the 50-kDa putative CDPK and an unknown protein, PP30 promoted by GA3 treatment are G-protein mediated in rice seedling roots.  相似文献   

13.
A protein kinase that phosphorylates histones and polysomal proteins was partially purified from mouse liver cytosol. The active enzyme has a molecular mass of 100 kDa and a phosphorylatable subunit of 54 kDa. Biochemical as well as immunological data suggest that the enzyme is a heterodimer composed of the catalytic subunit of cyclic AMP-dependent protein kinase and the RII regulatory subunit. This RC form does not seem to dissociate upon activation with 3, 5 cyclic AMP and exhibits identical specificity as the classical cAMP-dependent protein kinase (2.7.1.37). The enzyme is affected by the 3, 5 cyclic phosphates of adenosine mainly, but also of guanosine, uridine and cytidine in a substrate-dependent manner. Cyclic nucleotides slightly stimulate phosphate incorporation into histones, while phosphorylation of polysomal proteins in intact polysomes is dramatically increased. The substrate- specific stimulatory effects of 3, 5 cyclic nucleotides are due to repression of the inhibition exerted upon the reaction, by negatively charged macromolecules such as RNA, DNA and to a lesser extent heparin.  相似文献   

14.
Metabotropic glutamate receptor 5 (mGluR5) regulates excitatory post‐synaptic signaling in the central nervous system (CNS) and is implicated in various CNS disorders. Protein kinase A (PKA) signaling is known to play a critical role in neuropsychiatric disorders such as Parkinson's disease, schizophrenia, and addiction. Dopamine signaling is known to modulate the properties of mGluR5 in a cAMP‐ and PKA‐dependent manner, suggesting that mGluR5 may be a direct target for PKA. Our study identifies mGluR5 at Ser870 as a direct substrate for PKA phosphorylation and demonstrates that this phosphorylation plays a critical role in the PKA‐mediated modulation of mGluR5 functions such as extracellular signal‐regulated kinase phosphorylation and intracellular Ca2+ oscillations. The identification of the molecular mechanism by which PKA signaling modulates mGluR5‐mediated cellular responses contributes to the understanding of the interaction between dopaminergic and glutamatergic neuronal signaling.

  相似文献   


15.
The mechanisms of tyrosine hydroxylase (TH) activation by depolarization or exposure of dopaminergic terminals to cyclic AMP have been compared using rat striatal slices. Tissues were incubated with veratridine or 60 mM K+ (depolarizing conditions), on the one hand, and forskolin or dibutyryl cyclic AMP, on the other. K+-(or veratridine-)induced depolarization triggered an activation of TH (+75%) that persisted in soluble extracts of incubated tissues. This effect disappeared when drugs (EGTA, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, Gallopamil) preventing Ca2+- and calmodulin-dependent processes were included in the incubating medium. In contrast, prior in vivo reserpine treatment or in vitro addition of benztropine did not affect the depolarization-induced activation of TH. In vitro studies of soluble TH extracted from depolarized tissues indicated that activation was associated with a marked increase in the enzyme Vmax but with no change in its apparent affinity for the pteridin cofactor 6-methyl-5,6,7,8-tetrahydropterin (6-MPH4) or tyrosine. Furthermore, the activated enzyme from depolarized tissues exhibited the same optimal pH (5.8) as native TH extracted from control striatal slices. In contrast, TH activation resulting from tissue incubation in the presence of forskolin or dibutyryl cyclic AMP was associated with a selective increase in the apparent affinity for 6-MPH4 and a shift in the optimal pH from 5.8 to 7.0-7.2. Clear distinction between the two activating processes was further confirmed by the facts that heparin- and cyclic AMP-dependent phosphorylation stimulated TH activity from K+-exposed (and control) tissues but not that from striatal slices incubated with forskolin (or dibutyryl cyclic AMP). In contrast, the latter enzyme but not that from depolarized tissues could be activated by Ca2+-dependent phosphorylation. These data strongly support the concept that Ca2+- but not cyclic AMP-dependent phosphorylation is responsible for TH activation in depolarized dopaminergic terminals.  相似文献   

16.
Paramecium tetraurelia responds to chronic KCl-induced depolarization by swimming backward, but the ciliate recovers within seconds and then undergoes a prolonged adaptation period during which sensitivity to external stimuli is altered radically. We examined the role of Mg2+ in this phenomenon, prompted by finding that mutations in the eccentric-A gene both suppressed a Mg(2+)-specific conductance and prevented adaptation. Adaptation of the wild type proceeded normally when extracellular Mg2+ was varied from 0-20 mM, however, suggesting that channel-mediated Mg2+ fluxes were not involved. In seeking alternative explanations for the eccentric mutant phenotype, we ascertained that there was an osmotic component to adaptation but that K(+)-induced depolarization was the primary stimulus. We also noted that wild-type and eccentric mutant cells depolarized by equivalent amounts in KCl, suggesting that the genetic lesion must lie downstream of membrane-potential change. We also examined whether the adaptation-induced behavioral changes and, indeed, the defect in eccentric might be explained in terms of Mg2+ and Na+ efflux during behavioral testing, but experimental observations failed to support this notion. Finally, we consider the possibility that eccentric gene mutation prevents adaptation by interfering with intracellular free Mg2+ homeostasis in Paramecium.  相似文献   

17.
Five proteins having molecular masses of 90, 67, 37, 36, and 32 kDa (p90, p67, p37, p36, and p32, respectively) were identified in the particulate fractions of pig brain cortex and pig spinal cord prepared in the presence of 0.2 mM Ca2+ and further purified using a protocol previously described for the purification of calpactins. Proteins p90, p37, and p36 are related to annexins I and II. Annexin II, represented by p90, is found as an heterotetramer, composed of two heavy chains of 36 kDa and two light chains of 11 kDa, and as a monomer of 36 kDa. Protein p37, which differs immunologically from p36, is a monomer and could be related to annexin I. All three proteins are Ca(2+)-dependent phospholipid- and F-actin-binding proteins; they are phosphorylated on a serine and on a tyrosine residue by protein kinases associated with synaptic plasma membranes. Purified p36 monomer and p36 heterotetramer proteins bind to actin at millimolar Ca2+ concentrations. The stoichiometry of p36 binding to F-actin at saturation is 1:2, corresponding to one tetramer or monomer of calpactin for two actin monomers (KD, 3 x 10(-6) M). Synaptic plasma membranes supplemented with the monomeric or tetrameric forms of p36 phosphorylate the proteins on a serine residue. The monomer is phosphorylated on a serine residue by a Ca(2+)-independent protein kinase, whereas the heterotetramer is phosphorylated on a serine residue and a tyrosine residue by Ca(2+)-dependent protein kinases. Antibodies to brain p37 and p36 together with antibodies to lymphocytes lipocortins 1 and 2 were used to follow the distribution of these proteins in nervous tissues. Polypeptides of 37, 34, and 36 kDa cross-react with these antibodies. Anti-p37 and antilipocortin 1 cross-react on the same 37- and 34-kDa polypeptides; anti-p36 and antilipocortin 2 cross-react only on the 36-kDa polypeptides.  相似文献   

18.
Annexin VI has eight highly conserved repeated domains; all other annexins have four. Díaz-Mu?oz et al. (J Biol Chem 265:15894, 1990) reported that annexin VI alters the gating properties of the ryanodine-sensitive Ca(2+)-release channel isolated from sarcoplasmic reticulum. The investigate the domain structure of rat annexin VI (67 kDa calcimedin) required for this channel regulation, various proteolytic digestions were performed. In each case, protease-resistant core polypeptides were produced. Annexin VI was digested with V8 protease and two core polypeptides were purified by Ca(2+)-dependent phospholipid binding followed by HPLC. The purified fragments were shown to be derived from the N- and C-terminal halves of annexin VI, and demonstrated differential immunoreactivity with monoclonal antibodies to rat annexin VI. While both core polypeptides retained their ability to bind phospholipids in a Ca(2+)-dependent manner, they did not regulate the sarcoplasmic reticulum Ca(2+)-dependent manner, they did not regulate the sarcoplasmic reticulum Ca(2+)-release channel as did intact annexin VI.  相似文献   

19.
The structures of calcium-activated neutral protease (CANP) and its endogenous inhibitor elucidated recently have revealed novel features with respect to their structure-function relationship and enzyme activity regulation. The protease is regarded as a proenzyme which can be activated at the cell membrane in the presence of Ca2+ and phospholipid, and presumably regulates the functions of proteins, especially membrane-associated proteins, by limited proteolysis. Protein kinase C is hydrolysed and activated by CANP at the cell membrane to a cofactor-independent form. These results are reviewed and the possible involvement of CANP in signal transduction is discussed.  相似文献   

20.
Abstract: The systems responsible for phosphorylating tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis, were investigated in situ in adrenal medullary cells made permeable to solutes of up to 1,000 dalton by exposure to brief intense electric fields. Two different phosphorylation systems were found. One is dependent on Ca2+, the other on cyclic AMP. The Ca2+-dependent system is half-maximally activated by 1-2 μ M Ca2+ and 0.5 m M ATP, and follows a time course similar to that of secretion of catecholamines. Trifluoperazine (0.1 m M ) does not inhibit significantly Ca2+-dependent phosphorylation of tyrosine hydroxylase in situ. The cyclic AMP-dependent system is half-maximally activated by addition of 0.5 μ M cyclic AMP and about 0.3 m M ATP. Ca2+-dependent and cyclic AMP-dependent phosphorylations of tyrosine hydroxylase have roughly the same time course and are additive under conditions where one system is already saturated. Peptide maps of immunoprecipitated tyrosine hydroxylase, after in situ phosphorylation of the enzyme either in the presence of 10−8 M Ca2+ plus 2 × 10−5 M cyclic AMP or of 10−5 M Ca2+, show a marked difference indicating that the enzyme contains several phosphorylation sites. At least one of these sites is phosphorylated only by the Ca2+-dependent system, whereas the other site(s) are phosphorylated by both the Ca2+- and cyclic AMP-dependent systems. The effect of in situ phosphorylation of tyrosine hydroxylase on its enzymatic activity was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号