首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biomarkers are measurable biological parameters that change in response to xenobiotic exposure and other environmental or physiological stressors, and can be indices of toxicant exposure or effects. If the biomarkers are sufficiently specific and well characterized, they can have great utility in the risk assessment process by providing an indication of the degree of exposure of humans or animals in natural populations to a specific xenobiotic or class of xenobiotics. Most biomarkers are effective as indices of exposure, but adequate information is rarely available on the appropriate dose-response curves to have well-described biomarkers of effect that can be widely applicable to additional populations. Specific examples of acetylcholinest-erase inhibition following exposure to organophosphorus insecticides are cited from experiments in both mammals (rats) and fish. These experiments have indicated that the degree of inhibition can be readily influenced by endogenous (e.g., age) and exogenous (e.g., chemical exposures) factors, and that the degree of inhibition is not readily correlated with toxicological effects. Caution is urged, therefore, in an attempt to utilize biomarkers in the risk assessment process until more complete documentation is available on the specificity, sensitivity, and time course of changes, and on the impact of multiple exposures or the time of exposures.  相似文献   

2.
The sensitivities of acetylcholinesterases (ACHE) from the fungus-feeder Aphelenchus avenae and the plant-parasitic species Helicotylenchus dihystera and Pratylenchus penetrans and the housefly, Musca domestica, were compared using a radiometric assay which utilized H³ acetylcholine as a substrate. Nematode ACHE were generally less sensitive to inhibition by organophosphorns and carbamate pesticides than were ACHE from the housefly. ACHE from the plant-parasitic species and A. avenae were generally similar in sensitivity. In soil, carbamates were more toxic than the organophosphorus pesticides to A. avenae. All pesticides tested affected nematode movement, but fenamiphos was more inhibitory than others. The effects on dispersal of nematodes may be an important mechanism in control by some nematicides.  相似文献   

3.
To provide hints for the design of novel acetylcholinesterase (AChE) inhibitors with higher potency and specificity, the binding modes of the (RS, S)-17b and (RS, R)-17b enantiomers on AChE were chosen to investigate by molecular docking and molecular dynamics simulation. The results show that the binding modes of (RS, S)-17b and (RS, R)-17b are clearly different from each other. In particular, the (RS, S)-17b and (RS, R)-17b enantiomers tend to be planar and bend conformations to interact with AChE, respectively. Furthermore, based on the binding mode on AChE and structure modification of (RS, S)-17b, two novel inhibitors (1 and 2) with higher inhibitory activity were designed. Our design strategy suggests that the number of N and O atoms should be increased, the 5, 6-dimethoxy should be transformed into ring and the indanone moiety should be ring-opening, which would result in generating potent and selective AChE inhibitors.  相似文献   

4.
Reactions of molybdenum-sulphur compounds with cyanide are reported which may be relevant to (1) the chemical evolution of molybdoenzymes and (2) deactivation of molybdoenzymes by cyanide. (1) With aqueous cyanide MoS2 gave thio-bridged complex anions [(Mo(CN)6)2(mu-S)]6- and [(Mo(CN)4(mu-S))2]6-. Under prebiotic conditions such complexes could have been formed similarly from molybdenite and may have been precursors of molybdoenzymes. (2) Only those compounds which contained terminal sulphur bound to molybdenum (i.e., Mo = S groups), viz. oxothiomolybdates and the complex [(Mo(mu-S)(S)(Et2NCS2))2], reacted with cyanide; thiocyanate was formed and the molybdenum underwent two-electron reduction. That the cyanolysable sulphur of xanthine oxidase reacts in the same way with cyanide suggests the presence of a Mo = S group which could be a structural feature of the enzyme or could have been formed by initial cyanolysis of a bound persulphide or cysteine residue.  相似文献   

5.
Acetylcholinesterase (AChE) plays a pivotal role in synaptic transmission by hydrolyzing the neurotransmitter acetylcholine. In addition to the classical function of AChE in synaptic transmission, various non-classical functions have been elucidated. Unlike vertebrates possessing a single AChE gene (ace), invertebrates (nematodes, arachnids, and insects) have multiple ace loci, encoding diverse AChEs with a range of different functions. In the field of toxicology, AChE with synaptic function has long been exploited as the target of organophosphorus and cabarmate pesticides to control invertebrate pests for the past several decades. However, many aspects of the evolution and non-classical roles of invertebrate AChEs are still unclear. Although currently available information on invertebrate AChEs is fragmented, we reviewed the recent findings on their evolutionary status, molecular/biochemical properties, and deduced non-classical (non-neuronal) functions.  相似文献   

6.
We are here showing that peripheral mononuclear blood cells (PBMC) from cystic fibrosis (CF) patients contain almost undetectable amounts of mature 170 kDa CF-transmembrane conductance regulator (CFTR) and a highly represented 100 kDa form. This CFTR protein, resembling the form produced by calpain digestion and present, although in lower amounts, also in normal PBMC, is localized in cytoplasmic internal vesicles. These observations are thus revealing that the calpain-mediated proteolysis is largely increased in cells from CF patients. To characterize the process leading to the accumulation of such split CFTR, FRT cells expressing the F508del-CFTR mutated channel protein and human leukaemic T cell line (JA3), expressing wild type CFTR were used. In in vitro experiments, the sensitivity of the mutated channel to the protease is identical to that of the wild type, whereas in Ca2+-loaded cells F508del-CFTR is more susceptible to digestion. Inhibition of intracellular calpain activity prevents CFTR degradation and leads to a 10-fold increase in the level of F508del-CFTR at the plasma membrane, further indicating the involvement of calpain activity in the maintenance of very low levels of mature channel form. The higher sensitivity to calpain of the mutated 170 kDa CFTR results from a reduced affinity for HSP90 causing a lower degree of protection from calpain digestion. The recovery of HSP90 binding capacity in F508del-CFTR, following digestion, explains the large accumulation of the 100 kDa CFTR form in circulating PBMC from CF patients.  相似文献   

7.
Altered neurological function will generally be behaviourally apparent. Many of the behavioural models pioneered in mammalian models are portable to zebrafish. Tests are available to capture alterations in basic motor function, changes associated with exteroceptive and interoceptive sensory cues, and alterations in learning and memory performance. Excepting some endpoints involving learning, behavioural tests can be carried out at 4 days post fertilization. Given larvae can be reared quickly and in large numbers, and that software solutions are readily available from multiple vendors to automatically test behavioural responses in 96 larvae simultaneously, zebrafish are a potent and rapid model for screening neurological impairments. Coupling current and emerging behavioural endpoints with molecular techniques will permit and accelerate the determination of the mechanisms behind neurotoxicity and degeneration, as well as provide numerous means to test remedial drugs and other therapies. The emphasis of this review is to highlight unexplored/underutilized behavioural assays for future studies. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

8.
芸香草和西昌香茅挥发油的化学成分张荣,苏中武,李承祜(第二军医大学药学院,上海200433)关键词芸香草,西昌香茅,挥发油ChemicalconstituentsofessentialoilsfromCymbopogondistons(NeesexS...  相似文献   

9.
Structure, function and regulation of carboxylesterases   总被引:8,自引:0,他引:8  
This review covers current developments in molecular-based studies of the structure and function of carboxylesterases. To allay the confusion of the classic classification of carboxylesterase isozymes, we have proposed a novel nomenclature and classification of mammalian carboxylesterases on the basis of molecular properties. In addition, mechanisms of regulation of gene expression of carboxylesterases by xenobiotics and involvement of carboxylesterase in drug metabolism and enzyme induction are also described.  相似文献   

10.
The molecular weight of human transcortin, calculated from the sedimentation coefficient, was found to be 49,500, thus slightly lower than previously reported values. After purification, human transcortin trended to polymerize rapidly, with participation of both non covalent bonds and one disulfide bridge per dimer. The physicochemical parameters, the amino-acid and carbohydrate composition were determined; its stability was studied under different conditions. Preliminary structural studies showed that the N-terminal sequence of the polypeptide chain was: Met-Asp-Pro-Asn-Ala-Ala-Tyr-Val and that the C-terminal amino acid was leucine.  相似文献   

11.
At the end of gestation plasma levels of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D were lower in pregnant than non pregnant female rats. In fetal plasma, concentrations of both metabolites were higher than in maternal plasma. This materno-fetal gradient led us to compare maternal and fetal plasma binding abilities. Fetal plasma was half as potent in binding 25-hydroxyvitamin D as maternal plasma. In fetal plasma binding was mainly due to the plasma vitamin D binding protein. On the other hand this study clearly showed that amniotic fluid contained 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D. In addition this fluid was found to possess vitamin D-metabolite binding activity. The molecule responsible for this has been identified as the plasma vitamin D binding protein.  相似文献   

12.
The development of efficient tools is required for the eco-friendly detoxification and effective detection of neurotoxic organophosphates (OPs). Although enzymes have received significant attention as biocatalysts because of their high specific activity, the uneconomic and labor-intensive processes of enzyme production and purification make their broad use in practical applications difficult. Because whole-cell systems offer several advantages compared with free enzymes, including high stability, a reduced purification requirement, and low preparation cost, they have been suggested as promising biocatalysts for the detoxification and detection of OPs. To develop efficient whole-cell biocatalysts with enhanced activity and a broad spectrum of substrate specificity, several factors have been considered, namely the selected strains, the chosen OP-hydrolyzing enzymes, where enzymes are localized in a cell, and which enhancer will assist the expression, function, and folding of the enzyme. In this article, we review the current investigative progress in the development of engineered whole-cell biocatalysts with excellent OP-hydrolyzing activity, a broad spectrum of substrate specificity, and outstanding stability for the detoxification and detection of OPs.  相似文献   

13.
14.
15.
16.

Background

The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.

Scope of review

In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.

Major conclusions

Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.

General significance

Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.  相似文献   

17.
Sinko G  Calić M  Kovarik Z 《FEBS letters》2006,580(13):3167-3172
In the oximolysis reaction para-aldoximes K027 and TMB-4 react faster with ATCh than ortho-aldoximes HI-6 and K033. The reaction rate constants at 25 degrees C were 22 M(-1) min(-1) for HI-6 and K033, 230 M(-1) min(-1) for TMB-4 and 306 M(-1) min(-1) for K027. Semi-empirical calculations showed that differences in rates do not origin from different electron density on the oxygen of the oxime group, but can be explained by the steric hindrance of the oxime group within the molecule. Thermodynamic parameters, DeltaG#, DeltaH# and DeltaS#, were also determined for oximolysis reaction.  相似文献   

18.
  总被引:9,自引:0,他引:9  
Polyisoprenoid alcohols consisting of 9 or more isoprene units are present in all living cells. They can be fully unsaturated (polyprenols) or alpha-saturated (dolichol). Dolichol forms may have additional saturation at or near the omega-end. Some species contain ony dolichol or only polyprenols while others have nearly equal amounts of both types. Some polyisoprenoid alcohols consist entirely of trans isoprene units but most, including dolichol, contain both trans and cis units. Considerable advances in lipid methodology have occurred since the first review of polyisoprenoid alcohols by Hemming in 1974. For example, direct analysis of both dolichol and Dol-P by HPLC has replaced earlier methods which were often both insensitive and inaccurate. The availability of radiolabeled dolichol and polyprenols has facilitated studies concerning the metabolism and distribution of these compounds. Those studies suggest that only a small portion of the dolichol present in cells is likely to be involved in glycosylation. Polyisoprenoid alcohols are usually present at a family of homologues where each differs in size by one isoprene unit. Little or no size related specificity has been observed for any reaction involving dolichol or polyisoprenol intermediates. The overall length of polyisoprenoid alcohols may, however, affect the manner in which these compounds influence the physical and biochemical properties of membranes. Studies on the biosynthetic pathway leading from cis, trans Pol-PP by phosphatase action. The formation of the dolichol backbone from a polyprenol requires the action of an additional enzyme, an alpha-saturase. This enzyme does not always act at the level of a single common substrate, since Pol-PP, Pol-P, and polyprenol all appear to be utilized as substrates. The major product of the de novo pathway differs among different species. Dol-P would appear to be the most energy efficient end-product since it can participate directly in glycoprotein formation. Most often, however, Dol-P is not the major product of metabolic labeling experiments. In some cases, dolichol is formed so that rephosphorylation is required to provide Dol-P for participation in glycoprotein formation. The kinase responsible for this phosphorylation appears to bypass the considerable stores of dolichol present in tissues (i.e. sea urchin eggs) in favor of dolichol derived directly from de novo synthesis. Although HMGR is a major regulatory component of the pathway leading to polyisoprenoid alcohols and cholesterol, control is most often not co-ordinated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号