首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

2.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

3.
The apically restricted, voltage-dependent K+ conductance of Necturus taste receptor cells was studied using cell-attached, inside-out and outside-out configurations of the patch-clamp recording technique. Patches from the apical membrane typically contained many channels with unitary conductances ranging from 30 to 175 pS in symmetrical K+ solutions. Channel density was so high that unitary currents could be resolved only at negative voltages; at positive voltages patch recordings resembled whole-cell recordings. These multi-channel patches had a small but significant resting conductance that was strongly activated by depolarization. Patch current was highly K+ selective, with a PK/PNa ratio of 28. Patches containing single K+ channels were obtained by allowing the apical membrane to redistribute into the basolateral membrane with time. Two types of K+ channels were observed in isolation. Ca(2+)-dependent channels of large conductance (135-175 pS) were activated in cell-attached patches by strong depolarization, with a half-activation voltage of approximately -10 mV. An ATP-blocked K+ channel of 100 pS was activated in cell-attached patches by weak depolarization, with a half-activation voltage of approximately -47 mV. All apical K+ channels were blocked by the sour taste stimulus citric acid directly applied to outside-out and perfused cell-attached patches. The bitter stimulus quinine also blocked all channels when applied directly by altering channel gating to reduce the open probability. When quinine was applied extracellularly only to the membrane outside the patch pipette and also to inside-out patches, it produced a flickery block. Thus, sour and bitter taste stimuli appear to block the same apical K+ channels via different mechanisms to produce depolarizing receptor potentials.  相似文献   

4.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

5.
Single-channel recordings from central neurons of the helix snail, Cepaea nemoralis, revealed two types of channels that could be activated by stretch (i.e., by the membrane deformation produced when suction is applied to the patch pipette). One, a K+ channel (58 pS in physiological solution), was evident in excised and cell-attached patches. Its conductance in symmetrical [K+] solutions indicated a channel of high K+ permeability (PK = 3.4 x 10(-13) cm/s). Though osmoregulation has been suggested as a function for such channels, comparisons among molluscs indicate osmotic milieu does not govern their expression; Cepaea is terrestrial, and stretch-activated K+ channels similar to those described here occur in aquatic and marine molluscs. The second type of channel, observed only in excised patches, was Cl- permeant; it had a large conductance (130 pS) and was inactive prior to patch excision. Membrane tension may not be the physiological activator of either the K+ or Cl- channel; the channels are designated as stretch-activated channels on the basis of their experimental behaviour during single-channel recording.  相似文献   

6.
Nonselective cation channels were found in single channel recordings from cell-attached patches on human T lymphocytes. These channels were active under conditions that should lead to cell swelling (hypotonic bath solutions with NaCl or KCl); however, a definite dependence of activity on cell swelling has not been proven. Under these conditions similar channels were found in 20 of 23 patches from 11 different blood donors. The current-voltage relation was approximately linear for outward current (11-14 pS) and inwardly rectifying (to 23 pS) when the intact cells were depolarized with high KCl in the bath. The voltage dependence of channel activity is consistent with closing at hyperpolarized membrane potentials (Vm less than or equal to -50 mV) and block of open channels at strongly depolarized membrane potentials (Vm greater than 0 mV). Reversal potentials under all ionic gradients tested are consistent with a channel that is poorly selective between Na+ and K+ ions. Active channels in cell-attached patches were rapidly blocked by bath addition of the membrane-permeant inhibitor quinine. Channels that were active in cell-attached became quiescent after patch excision; however, two patches remained active long enough to obtain current-voltage relations. These were linear with a slope conductance for outward current of 8-11 pS. Because of the clustering of single-channel openings, detailed voltage dependence of kinetics and probability of opening were not studied.  相似文献   

7.
The effects of arginine-vasopressin (AVP) (0.01-1 microM) on membrane potential, [Ca2+]i and ATP-sensitive potassium channels have been studied in the insulin-secreting cell line RINm5F. In whole cells, with an average spontaneous cellular transmembrane potential of -64 +/- 3 mV (n = 33) and an average basal [Ca2+]i of 102 +/- 6 nM (n = 40), AVP evoked: (i) membrane depolarization, (ii) voltage-dependent Ca2+ spike-potentials and (iii) a sharp rise in [Ca2+]i. Single-channel current events recorded from excised outside-out membrane patches show that AVP closes potassium channels that are also closed by tolbutamide (100 microM) and opened by diazoxide (100 microM). AVP acts on KATP channels specifically from the outside of the membrane and a soluble cytosolic messenger appears not to be involved, since there is no channel activation in cell-attached membrane patches when the peptide is added to the bath solution.  相似文献   

8.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

9.
These studies examine the properties of an apical potassium (K+) channel in macula densa cells, a specialized group of cells involved in tubuloglomerular feedback signal transmission. To this end, individual glomeruli with thick ascending limbs (TAL) and macula densa cells were dissected from rabbit kidney and the TAL covering macula densa cells was removed. Using patch clamp techniques, we found a high density (up to 54 channels per patch) of K+ channels in the apical membrane of macula densa cells. An inward conductance of 41.1 +/- 4.8 pS was obtained in cell-attached patches (patch pipette, 140 mM K+). In inside- out patches (patch pipette, 140 mM; bath, 5 mM K+), inward currents of 1.1 +/- 0.1 pA (n = 11) were observed at 0 mV and single channel current reversed at a pipette potential of -84 mV giving a permeability ratio (PK/PNa) of over 100. In cell-attached patches, mean channel open probability (N,Po, where N is number of channels in the patch and Po is single channel open probability) was unaffected by bumetanide, but was reduced from 11.3 +/- 2.7 to 1.6 +/- 1.3 (n = 5, p < 0.02) by removal of bath sodium (Na+). Simultaneous removal of bath Na+ and calcium (Ca2+) prevented the Na(+)-induced decrease in N.Po indicating that the effect of Na+ removal on N.Po was probably mediated by stimulation of Ca2+ entry. This interpretation was supported by studies where ionomycin, which directly increases intracellular Ca2+, produced a fall in N.Po from 17.8 +/- 4.0 to 5.9 +/- 4.1 (n = 7, p < 0.02). In inside- out patches, the apical K+ channel was not sensitive to ATP but was directly blocked by 2 mM Ca2+ and by lowering bath pH from 7.4 to 6.8. These studies constitute the first single channel observations on macula densa cells and establish some of the characteristics and regulators of this apical K+ channel. This channel is likely to be involved in macula densa transepithelial Cl- transport and perhaps in the tubuloglomerular feedback signaling process.  相似文献   

10.
CaCo-2 is a human colonic carcinoma cell line which becomes differentiated in culture to form a polarized epithelium exhibiting several of the functional characteristics of native colonic tissue. In the present study, CaCo-2 cells have been used for a patch-clamp study of colonic ion conductance pathways. A large, 120 pS K(+)-selective channel was found in cells forming subconfluent monolayers in culture. Unlike Maxi-K+ channels found in other epithelial cells, this channel was not activated with elevations in cytosolic Ca2+. Channel activity was stimulated with membrane depolarization and most markedly with membrane stretch. The application of negative pressure (20 mm-Hg) to both cell-attached and excised, inside-out membrane patches caused a burst of channel activity which disappeared within seconds of suction removal. Single-channel conductance of the pressure-activated channel was decreased when quinine (100 microM) was present in the patch pipette.  相似文献   

11.
Patch-clamp single-channel current recording experiments have been carried out on intact insulin-secreting RINm5F cells. Voltage-activation of high-conductance K+ channels were studied by selectively depolarizing the electrically isolated patch membrane under conditions with normal Ca2+ concentration in the bath solution but with or without Ca2+ in the patch pipette solution. When Ca2+ was present in the pipette, 40 mV to 120 mV depolarizing pulses (100 ms) from the normal resting potential (-70 mV) regularly evoked tetraethylammonium-sensitive large outward single-channel currents and the average open state probability during the pulses varied from about 0.015 (40 mV pulses) to 0.1 (120 mV pulses). In the absence of Ca2+ in the pipette solution the same protocol resulted in fewer and shorter K+ channel openings and the open-state probability varied from about 0.0015 (40 mV pulses) to about 0.03 (120 mV pulses). It is concluded that Ca2+ entering voltage-gated channels raises [Ca2+]i locally and thereby markedly enhances the open-state probability of tetraethylammonium-sensitive voltage-gated high-conductance K+ channels.  相似文献   

12.
Currents through single potassium channels were studied in cell-attached or inside-out patches from collagenase-dispersed smooth muscle cells of the guinea pig taenia coli. Under conditions mimicking the physiological state with [K+]i = 135 mM: [K+]o = 5.4 mM, three distinct types of K+ channel were identified with conductances around 0 mV of 147, 94, and 63 pS. The activities of the 94- and 63-pS channel were observed infrequently. The 147-pS channel was most abundant. It has a reversal potential of approximately -75 mV. It is sensitive to [Ca2+]i and to membrane potential. At -30 mV, the probability of a channel being open is at a minimum. At more positive voltages, the probability follows Boltzman distribution. A 10-fold change in [Ca2+]i causes a 25-mV negative shift of the voltage where half of the channels are open; an 11.3-mV change in membrane potential produces an e-fold increase in the probability of the channel being open when P is low. At voltages between -30 and -50 mV, the open probability increases in an anomalous manner because of a large decrease of the channel closed time without much change in the channel open time. This anomalous activity may play a regulatory role in maintaining the resting potential. The histograms of channel open and closed time fit well, respectively, with single and double exponential distributions. Upon step depolarizations by 100-ms pulses, the 147-pS channel opens with a brief delay. The delay shortens and both the number of open channels and the open time increase with increasing positivity of the potential. The averaged currents during the step depolarizations closely resemble the delayed rectifying outward K+ currents in whole-cell recordings.  相似文献   

13.
K+ channels were recorded in excised, inside-out patches from the apical membrane of the freshly isolated tubule of the caudal portion of the rat epididymis. With asymmetric K+ concentrations in bath and pipette (140 mM K+in/6 mM K+out), the channels had a slope conductance of 54.2 pS at 0 mV. The relative permeability of K+ over Na+ was about 171 to 1. The channels were activated by intracellular Ca2+ and by membrane depolarization. These channels belong to a class defined as "intermediate-conductance Ca2+-activated K+ channel. " External tetraethylammonium ions (TEA+) caused a flickery block of the channel with reduction in single-channel current amplitude measured at a range of holding membrane potentials (-40 to 60 mV). Activity of the K+ channels was inhibited by intracellular ATP (KD =1.188 mM). The channel activity was detected only occasionally in patches from the apical membrane (about 1 in 17 patches containing active channels). The presence of the intermediate-conductance Ca2+-activated K+ channels indicates that they could provide a route for K+ secretion in a Ca2+-dependent process responsible for a high luminal K+ concentration found in the epididymal duct of the rat.  相似文献   

14.
A primary determinant of vascular smooth muscle (VSM) tone and contractility is the resting membrane potential, which, in turn, is influenced heavily by K+ channel activity. Previous studies from our laboratory and others have demonstrated differences in the contractility of cerebral arteries from near-term fetal and adult animals. To test the hypothesis that these contractility differences result from maturational changes in voltage-gated K+ channel function, we compared this function in VSM myocytes from adult and fetal sheep cerebral arteries. The primary current-carrying, voltage-gated K+ channels in VSM myocytes are the large conductance Ca2+-activated K+ channels (BKCa) and voltage-activated K+ (KV) channels. We observed that at voltage-clamped membrane potentials of +60 mV in perforated whole cell studies, the normalized outward current densities in fetal myocytes were >30% higher than in those of the adult (P < 0.05) and that these were predominantly due to iberiotoxin-sensitive currents from BKCa channels. Excised, insideout membrane patches revealed nearly identical unitary conductances and Hill coefficients for BKCa channels. The plot of log intracellular [Ca2+] ([Ca2+]i) versus voltage for half-maximal activation (V(1/2)) yielded linear and parallel relationships, and the change in V(1/2) for a 10-fold change in [Ca2+] was also similar. Channel activity increased e-fold for a 19 +/- 2-mV depolarization for adult myocytes and for an 18 +/- 1-mV depolarization for fetal myocytes (P > 0.05). However, the relationship between BKCa open probability and membrane potential had a relative leftward shift for the fetal compared with adult myocytes at different [Ca2+]i. The [Ca2+] for half-maximal activation (i.e., the calcium set points) at 0 mV were 8.8 and 4.7 microM for adult and fetal myocytes, respectively. Thus the increased BKCa current density in fetal myocytes appears to result from a lower calcium set point.  相似文献   

15.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

16.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

17.
Using the cell-attached configuration of the patch clamp technique, we have identified two different types of Ca channels in rat pancreatic beta-cell membranes. The two channels differ in single channel conductance, voltage dependence, and inactivation properties. The single-channel conductance, measured with 100 mM Ba2+ in the pipette, was 21.8 pS for the large channel and 6.4 pS for the small channel. The large-conductance channel is similar to the fast deactivating or L-type Ca channel described in other preparations. It is voltage dependent, has a threshold for activation around -30 mV, and can be activated from a holding potential of -40 mV. On the other hand, the small-conductance Ca channel is similar to the SD or T type Ca channel; it has a lower activation threshold, around -50 mV, and it can be inactivated by holding the membrane potential at -40 mV.  相似文献   

18.
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.  相似文献   

19.
20.
Cell-attached recordings revealed Cl(-) channel activity in basolateral membrane of guinea pig distal colonic crypts isolated from basement membrane. Outwardly rectified currents ((gp)Cl(or)) were apparent with a single-channel conductance (gamma) of 29 pS at resting membrane electrical potential; another outward rectifier with gamma of 24 pS was also observed ( approximately 25% of (gp)Cl(or)). At a holding potential of -80 mV gamma was 18 pS for both (gp)Cl(or) currents, and at +80 mV gamma was 67 and 40 pS, respectively. Identity as Cl(-) channels was confirmed in excised patches by changing bath ion composition. From reversal potentials, relative permeability of K(+) over Cl(-) (P(K)/P(Cl)) was 0.07 +/- 0.03, with relative permeability of Na(+) over Cl(-) (P(Na)/P(Cl)) = 0.08 +/- 0.04. A second type of Cl(-) channel was seen with linear current-voltage (I-V) relations ((gp)Cl(L)), having subtypes with gamma of 21, 13, and 8 pS. Epinephrine or forskolin increased the number of open (gp)Cl(or) and (gp)Cl(L). Open probabilities (P(o)) of (gp)Cl(or), (gp)Cl(L21), and (gp)Cl(L13) were voltage dependent in cell-attached patches, higher at more positive potentials. Kinetics of (gp)Cl(or) were more rapid with epinephrine activation than with forskolin activation. Epinephrine increased P(o) at the resting membrane potential for (gp)Cl(L13). Secretagogue activation of these Cl(-) channels may contribute to stimulation of electrogenic K(+) secretion across colonic epithelium by increasing basolateral membrane Cl(-) conductance that permits Cl(-) exit after uptake via Na(+)-K(+)-2Cl(-) cotransport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号