首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Available experimental data suggest that adiponectin and thyroid hormones have biological interaction in vivo. However, the effects of thyroid hormones on adipose adiponectin gene expression in thyroid dysfunction are unclear. We induced hyper- (HYPER) and hypothyroidism (HYPO) by daily administration of a 12 mg/l of levothyroxine and 250 mg/l of methimazole in drinking water of rats, respectively, for 42 days. The white adipose tissues and serum sample were taken on days 15, 28, 42 and also 2 weeks after treatment cessation. Analysis of adiponectin gene expression was performed by real-time PCR and 2−ΔΔct method. The levels of adipose tissue adiponectin mRNA in the HYPO rats were decreased during the 6-week treatment when compared to control rats (<0.05) and were increased significantly 2 weeks after HYPO cessation (P < 0.05). This decline in adiponectin gene expression occurred in parallel with a decrease in T3, T4, fT3 and fT4 concentrations (P < 0.05). In opposite to HYPO rats, adipose adiponectin gene expression was increased in HYPER rats during the 6-week treatment in parallel with an increase the thyroid hormones concentrations (P < 0.05), and its expression was decreased 2 weeks after HYPER cessation (P < 0.05). Adiponectin gene expression levels showed significant negative correlations with concentrations of LDL (HYPO; r = −0.806, P = 0.001 and HYPER; r = −0.749, P = 0.002), triglyceride (HYPO; r = −0.825, P = 0.001 and HYPER; r = −0.824, P = 0.001) and significant positive correlations with concentrations of glucose (HYPO; r = 0.674, P = 0.004 and HYPER; r = 0.866, P = 0.001) and HDL (HYPO; r = 0.755, P = 0.001 and HYPER; r = 0.839, P = 0.001). The current study provides evidence that adiponectin gene expression in adipose tissue is regulated by thyroid hormones at the translation level and that lipid and carbohydrate disturbances in a patient with thyroid dysfunction may be, in part, due to adiponectin gene expression changes.  相似文献   

3.
4.
To understand the molecular mechanisms responsible for the sepsis-induced enhanced glucose uptake, we have examined the levels of GLUT4 and GLUT1 mRNA and protein in the adipose tissue of septic animals. Rats were challenged with a nonlethal septic insult where euglycemia was maintained and hexose uptake in adipose tissue was markedly elevated. Northern blot analysis of total RNA isolated from epididymal fat pads indicated differential regulation of the mRNA content for the two transporters: GLUT1 mRNA was increased 2.6 to 4.6-fold, while GLUT4 mRNA was decreased by 2.5 to 2.9-fold. Despite the difference in mRNA levels, both GLUT1 and GLUT4 protein were down regulated in plasma membranes (40% and 25%, respectively) and microsomal membranes (42% and 25%, respectively) of the septic animals. The increased glucose uptake cannot be explained by the membrane content of GLUT1 and GLUT4 protein. Thus, during hypermetabolic sepsis, increased glucose utilization by adipose tissue is dependent on alternative processes.  相似文献   

5.
Expression of the gene encoding metallothionein, a low molecular-weight cysteine-rich, stress-response and metal-binding protein was examined in human adipose tissue. The mRNA for MT-2A, a major metallothionein isoform in humans, was detected in subcutaneous fat using a specific antisense oligonucleotide probe. The level of MT-2A mRNA was significantly higher in a group of obese subjects than in a lean group, paralleling a similar increase in ob mRNA. A two-week period on a diet of 800 calories/day did not lead to any significant change in MT-2 mRNA levels. Separation of mature adipocytes from the cells of the stromal vascular fraction indicated that in human adipose tissue the metallothionein (MT-2A) gene is expressed both in adipocytes and in other cells of the tissue.  相似文献   

6.
Adipose tissue is an endocrine organ involved in storage and release of energy but also in regulation of energy metabolism in other organs via secretion of peptide and protein hormones (adipokines). Especially visceral adipose tissue has been implicated in the development of metabolic syndrome and type 2 diabetes. Factors secreted by the stromal-vascular fraction contribute to the secretome and modulate adipokine secretion by adipocytes. Therefore, we aimed at the characterization of the adipose tissue secretome rather than the adipocyte cell secretome. The presence of serum proteins and intracellular proteins from damaged cells, released during culture, may dramatically influence the dynamic range of the sample and thereby identification of secreted proteins. Part of the study was therefore dedicated to the influence of the culture setup on the quality of the final sample. Visceral adipose tissue was cultured in five experimental setups, and the quality of resulting samples was evaluated in terms of protein concentration and protein composition. The best setup involved one wash after the 1st h in culture followed by two or three additional washes within an 8-h period, starting after overnight culture. Thereafter tissue was maintained in culture for an additional 48-114 h to obtain the final sample. For the secretome experiment, explants were cultured in media containing L-[(13)C(6),(15)N(2)]lysine to validate the origin of the identified proteins (adipose tissue- or serum-derived). In total, 259 proteins were identified with > or =99% confidence. 108 proteins contained a secretion signal peptide of which 70 incorporated the label and were considered secreted by adipose tissue. These proteins were classified into five categories according to function. This is the first study on the (human) adipose tissue secretome. The results of this study contribute to a better understanding of the role of adipose tissue in whole body energy metabolism and related diseases.  相似文献   

7.
The adipose renin-angiotensin system (RAS) has been assigned to participate in the control of adipose tissue development and in the pathogenesis of obesity-related hypertension. In adipose cells, the biological responses to beta-adrenergic stimulation are mediated by an increase in intracellular cAMP. Because cAMP is known to promote adipogenesis and because an association exists between body fat mass, hypertension, and increased sympathetic stimulation, we examined the influence of cAMP on angiotensinogen (ATG) expression and secretion in rat adipose tissue. Exposure of primary cultured differentiated preadipocytes to the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) or cAMP-stimulating agents (forskolin and IBMX) results in a significant increase in ATG mRNA levels. In adipose tissue fragments, 8-BrcAMP also increases ATG mRNA levels and protein secretion, but not in the presence of the protein kinase A inhibitor H89. The addition of isoproterenol, known to stimulate the synthesis of intracellular cAMP via beta-adrenoreceptors, had the same stimulatory effect on ATG expression and secretion. These results indicate that cAMP in vitro upregulates ATG expression and secretion in rat adipose tissue via the protein kinase A-dependent pathway. Further studies are required to determine whether this regulatory pathway is activated in human obesity, where increased sympathetic tone is frequently observed, and to elucidate the importance of adipose ATG to the elevated blood pressure observed in this pathological state.  相似文献   

8.
NPY is an important central orexigenic hormone, but little is known about its peripheral actions in human adipose tissue (AT) or its potential paracrine effects. Our objective was to examine NPY's role in AT, specifically addressing NPY protein expression, the effect of NPY on adipokine secretion, and the influence of insulin and rosiglitazone (RSG) on adipocyte-derived NPY in vitro. Ex vivo human AT was obtained from women undergoing elective surgery [age: 42.7 +/- 1.5 yr (mean +/- SE), BMI: 26.2 +/- 0.7 kg/m(2); n = 38]. Western blot analysis was used to determine NPY protein expression in AT depots. Abdominal subcutaneous (AbSc) adipocytes were isolated and treated with recombinant (rh) NPY, insulin, and RSG. NPY and adipokine levels were measured by ELISA. Our results were that NPY was localized in human AT and adipocytes and confirmed by immunohistochemistry. Depot-specific NPY expression was noted as highest in AbSc AT (1.87 +/- 0.23 ODU) compared with omental (Om; 1.03 +/- 0.15 ODU, P = 0.029) or thigh AT (Th; 1.0 +/- 0.29 ODU, P = 0.035). Insulin increased NPY secretion (control: 0.22 +/- 0.024 ng/ml; 1 nM insulin: 0.26 +/- 0.05 ng/ml; 100 nM insulin: 0.29 +/- 0.04 ng/ml; 1,000 nM insulin: 0.3 +/- 0.04 ng/ml; P < 0.05, n = 13), but cotreatment of RSG (10 nM) with insulin (100 nM) had no effect on NPY secretion. Furthermore, adipocyte treatment with rh-NPY downregulated leptin secretion (control: 6.99 +/- 0.89 ng/ml; 1 nmol/l rh-NPY: 4.4 +/- 0.64 ng/ml; 10 nmol/l rh-NPY: 4.3 +/- 0.61 ng/ml, 100 nmol/l rh-NPY: 4.2 +/- 0.67 ng/ml; P < 0.05, n = 10) but had no effect on adiponectin or TNF-alpha secretion. We conclude that NPY is expressed and secreted by human adipocytes. NPY secretion is stimulated by insulin, but this increment was limited by cotreatment with RSG. NPY's antilipolytic action may promote an increase in adipocyte size in hyperinsulinemic conditions. Adipose-derived NPY mediates reduction of leptin secretion and may have implications for central feedback of adiposity signals.  相似文献   

9.
10.
11.
Glycogen synthase kinase-3 (GSK-3) is a ubiquitous kinase implicated in both insulin action and adipogenesis. To determine how these multiple roles may relate to insulin resistance, we studied the regulation of GSK-3 protein expression and phosphorylation in skeletal muscle and isolated adipocytes from nonobese healthy control (HC), obese control (OC), and obese type 2 diabetic (OT2D) subjects. At baseline there were no differences in the GSK-3 protein expression in adipocytes. OC subjects underwent a 6-mo caloric restriction resulting in a 7% decrease in body mass index (BMI) and a 21% improvement in insulin-stimulated whole body glucose disposal rate (GDR). GSK-3alpha and GSK-3beta expression decreased in adipocytes (P < 0.05), whereas GSK-3alpha protein expression increased in skeletal muscle (P < 0.05). OT2D subjects were treated with troglitazone or metformin for 3-4 mo. After troglitazone treatment GDR improved (P < 0.05) despite an increase in BMI (P < 0.05), whereas metformin had no significant effect on GDR. There was no significant change in GSK-3 expression in adipocytes following troglitazone, whereas both GSK-3alpha and -beta were decreased in skeletal muscle (P < 0.05). Metformin treatment had no significant impact on GSK-3 protein expression in either adipocytes or skeletal muscle. Neither treatment influenced GSK-3 serine phosphorylation in skeletal muscle or adipocytes. These results suggest that there is tissue specificity for the regulation of GSK-3 in humans. In skeletal muscle GSK-3 plays a role in control of metabolism and insulin action, whereas the function in adipose tissue is less clear.  相似文献   

12.
Msx-1 gene expression and regulation in embryonic palatal tissue   总被引:2,自引:0,他引:2  
Summary The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.  相似文献   

13.
Adiponectin is a hormone secreted from adipose tissue, and serum levels are decreased with obesity and insulin resistance. Because prolactin (PRL) and growth hormone (GH) can affect insulin sensitivity, we investigated the effects of these hormones on the regulation of adiponectin in human adipose tissue in vitro and in rodents in vivo. Adiponectin secretion was significantly suppressed by PRL and GH in in vitro cultured human adipose tissue. Furthermore, PRL increased adiponectin receptor 1 (AdipoR1) mRNA expression and GH decreased AdipoR2 expression in the cultured human adipose tissue. In transgenic mice expressing GH, and female mice expressing PRL, serum levels of adiponectin were decreased. In contrast, GH receptor deficient mice had elevated adiponectin levels, while PRL receptor deficient mice were unaffected. In conclusion, we demonstrate gene expression of AdipoR1 and AdipoR2 in human adipose tissue for the first time, and show that these are differentially regulated by PRL and GH. Both PRL and GH reduced adiponectin secretion in human adipose tissue in vitro and in mice in vivo. Decreased serum adiponectin levels have been associated with insulin resistance, and our data in human tissue and in transgenic mice suggest a role for adiponectin in PRL and GH induced insulin resistance.  相似文献   

14.
3H-1,2-Dithiole-3-thione (D3T), a potent member of dithiolethiones, induces phase 2 enzymes by activating an Nrf2/Keap1-dependent signaling pathway. It was proposed that interaction between D3T and two adjacent sulfhydryl groups of Keap1 might cause dissociation of Keap1 from Nrf2, leading to Nrf2 activation. This study was undertaken to investigate the reactions between D3T and thiols, including the dithiol compound, dithiothreitol (DTT), and the monothiol, glutathione (GSH). We reported here that under physiologically relevant conditions incubation of D3T with DTT caused remarkable oxygen consumption, indicating a redox reaction between D3T and the dithiol molecule. Incubation of D3T with GSH also led to oxygen consumption, but to a less extent. Electron paramagnetic resonance (EPR) studies showed that the redox reaction between D3T and DTT generated superoxide. Superoxide was also formed from the redox reaction of D3T with GSH. These findings demonstrate that D3T reacts with thiols, particularly a dithiol, generating superoxide, which may provide a mechanistic explanation for induction of Nrf2-dependent phase 2 enzymes by D3T.  相似文献   

15.
Apolipoprotein E (apoE) is a multifunctional protein that is highly expressed in human and murine adipose tissue. Endogenous adipocyte apoE expression influences adipocyte triglyceride turnover and modulates the expression of genes involved in lipid synthesis and oxidation. We now demonstrate the regulation of adipose tissue apoE expression by nutritional status in lean and obese mice. Obesity induced by high-fat diet, or by hyperphagia in ob/ob mice, produces significant reduction of adipose tissue apoE expression at the protein and messenger RNA level. Fasting in C57BL/6J mice for 24 h significantly increased apoE protein and messenger RNA levels. In ob/ob mice, transplantation of adipose tissue from lean littermate controls to restore circulating leptin levels produced significant weight loss over 12 wk and also produced an increase in adipose tissue apoE expression. The increase in adipose tissue apoE expression in this model, however, did not require leptin. Adipose tissue apoE was also significantly increased in ob/ob mice after a 48-h fast or after 7 days of caloric restriction. In summary, obesity suppresses adipose tissue apoE expression, whereas fasting or weight loss increases it. From our previous observations, these changes in adipose tissue apoE expression will have significant impact on adipose tissue lipid flux and lipoprotein metabolism. Furthermore, these results suggest adipose tissue apoE participates in defending adipose tissue and organismal energy homeostasis in response to nutritional perturbation.  相似文献   

16.
17.

Background

Visceral fat (VF) accretion is a hallmark of aging in humans. Epidemiologic studies have implicated abdominal obesity as a major risk factor for insulin resistance, type 2 diabetes, cardiovascular disease, metabolic syndrome and death.

Methods

Studies utilizing novel rodent models of visceral obesity and surgical strategies in humans have been undertaken to determine if subcutaneous (SC) abdominal or VF are causally linked to age-related diseases.

Results

Specific depletion or expansion of the VF depot using genetic or surgical tools in rodents has been shown to have direct effects on disease risk. In contrast, surgically removing large quantities of SC fat does not consistently improve metabolic parameters in humans or rodents, while benefits were observed with SC fat expansion in mice, suggesting that SC fat accrual is not an important contributor to metabolic decline. There is also compelling evidence in humans that abdominal obesity is a stronger risk factor for mortality risk than general obesity. Likewise, we have shown that surgical removal of VF improves mean and maximum lifespan in rats, providing the first causal evidence that VF depletion may be an important underlying cause of improved lifespan with caloric restriction.

General significance

This review provides both corollary and causal evidence for the importance of accounting for body fat distribution, and specifically VF, when assessing disease and mortality risk. Given the hazards of VF accumulation on health, treatment strategies aimed at selectively depleting VF should be considered as a viable tool to effectively reduce disease risk in humans.  相似文献   

18.
CCL2 (MCP-1, monocyte chemoattractant protein 1) and CCL3 (MIP-1alpha, macrophage inflammatory protein 1alpha) are required for macrophage infiltration in adipose tissue. Insulin increases CCL2 expression in adipose tissue and in serum more in insulin-resistant obese than in insulin-sensitive lean mice, but whether this is true in humans is unknown. We compared basal expression and insulin regulation of CCL2 and CCL3 in adipose tissue and MCP-1 and MIP-1alpha in serum between insulin-resistant and insulin-sensitive human subjects. Subcutaneous adipose tissue biopsies and blood samples were obtained before and at the end of 6 h of in vivo euglycemic hyperinsulinemia (maintained by the insulin clamp technique) in 11 lean insulin-sensitive and 10 obese insulin-resistant women, and before and after a 6-h saline infusion in 8 women. Adipose tissue mRNA concentrations of monocyte/macrophage markers CD68, EMR1, ITGAM, ADAM8, chemokines CCL2 and CCL3, and housekeeping gene ribosomal protein large P0 (RPLP0) were measured by means of real-time PCR at baseline. In addition, mRNA concentrations of CCL2, CCL3, and RPLP0 were measured after insulin infusion. Levels of MCP-1 and MIP-1alpha were determined in serum, and protein concentration of MCP-1 was determined in adipose tissue at baseline and after insulin infusion. Basally, expression of the macrophage markers CD68 and EMR1 were increased in adipose tissue of insulin-resistant subjects. Insulin increased MCP-1 gene and protein expression significantly more in the insulin-resistant than in the insulin-sensitive subjects. Basally expression of CCL2 and CCL3 and expression of macrophage markers CD68 and ITGAM were significantly correlated. In serum, MCP-1 decreased significantly in insulin-sensitive but not insulin-resistant subjects. MIP-1alpha was undetectable in serum. Insulin regulation of CCL2 differs between insulin-sensitive and -resistant subjects in a direction that could exacerbate adipose tissue inflammation.  相似文献   

19.
White adipose tissue (WAT) has been examined to determine whether the gene encoding metallothionein (MT), a low-molecular-weight stress response protein, is expressed in the tissue and whether MT may be a secretory product of adipocytes. The MT-1 gene was expressed in epididymal WAT, with MT-1 mRNA levels being similar in lean and obese (ob/ob) mice. MT-1 mRNA was found in each of the main adipose tissue sites (epididymal, perirenal, omental, subcutaneous), and there was no major difference between depots. Separation of adipocytes from the stromal-vascular fraction of WAT indicated that the MT gene (MT-1 and MT-2) was expressed in adipocytes themselves. Treatment of mice with zinc had no effect on MT-1 mRNA levels in WAT, despite strong induction of MT-1 expression in the liver. MT-1 gene expression in WAT was also unaltered by fasting or norepinephrine. However, administration of a beta(3)-adrenoceptor agonist, BRL-35153A, led to a significant increase in MT-1 mRNA. On differentiation of fibroblastic preadipocytes to adipocytes in primary culture, MT was detected in the medium, suggesting that the protein may be secreted from WAT. It is concluded that WAT may be a significant site of MT production; within adipocytes, MT could play an antioxidant role in protecting fatty acids from damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号