首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dissociation of the regulatory light chains from scallop myosin subfragments, on addition of EDTA, was investigated by using the fluorophore 8-anilinonaphthalene-1-sulphonate as a probe. The rate of this process (0.014 s-1) was partially limited by the rate of Mg2+ dissociation (0.058 s-1) from the non-specific high-affinity site. The dissociation of the regulatory light chain subfragment 1 was less extensive than from heavy meromyosin. Reassociation of the scallop regulatory light chain was induced on addition of Mg2+, but it appeared to be limited by a first-order step. The nature of this step was revealed by the kinetics of Mercenaria regulatory light chain association. Scallop heavy meromyosin, denuded of its regulatory light chains, exists in a refractory state, whose reversal to the nascent state limits the rate of light chain association (0.006 s-1). The formation of the refractory state is the driving force for the net dissociation of regulatory light chains from scallop heavy meromyosin. This mechanism is discussed with reference to existing structural information on light-chain-denuded myosin.  相似文献   

2.
Using the rapid-mixing/photocross-linking technique developed in our laboratory, we have investigated the kinetics of interaction between Escherichia coli RNA polymerase and pAR1319, a recombinant plasmid DNA containing the bacteriophage T7 A2 early promoter. By monitoring the time-dependent density of bound RNA polymerase along the relaxed circular DNA molecule using this technique, we have been able to demonstrate kinetic evidence for linear diffusion of RNA polymerase along DNA in a different system from that previously described (Park, C. S., Hillel, Z., and Wu, C.-W. (1982) J. Biol. Chem. 251, 6950-6956). The nonspecific association rate constant kon was measured to be 7.7 x 10(4) M-1 s-1 at a DNA chain concentration of 22.4 nM. By taking advantage of the fact that rapid mixing displaces bound protein molecules from DNA, but leaves them within the domain of the DNA, the rate of intradomain binding of RNA polymerase to pAR1319 DNA was determined to be 8.2 s-1. Since the plasmid is described by a radius of gyration of 0.22 microns, the intradomain concentration of base pairs could be calculated. Using this concentration (180 microM), the rate constant for intradomain nonspecific association of RNA polymerase to pAR1319 DNA was estimated to be 4.6 x 10(4) M-1 s-1. In addition, a mathematical model has been used to fit the other two important rate constants to the experimental data: koff, which describes the dissociation of RNA polymerase from nonspecific binding sites, and D1, the one-dimensional diffusion coefficient of the enzyme along the DNA molecule. In this model, the circular DNA molecule is described as a ring of interconnected binding sites which together comprise a DNA "domain." RNA polymerase, which enters the domain via three-dimensional diffusion and binds to each site, is allowed to diffuse linearly between adjacent sites and three-dimensionally on and off the DNA molecule. The rate equations for the time-dependent occupancy of each site by RNA polymerase could be written, based on general principles. By solving the resulting family of differential equations, koff and D1 were determined to be 0.3 s-1 and 1.5 x 10(-9) cm2 s-1, respectively.  相似文献   

3.
4.
Interaction of DNA-(N4-cytosine)-methyltransferase from the Bacillus amyloliquefaciens (BamHI MTase, 49 kDa) with a 20-mer oligonucleotide duplex containing the palindrome recognition site GGATCC was studied by methods of steady-state and presteady-state kinetics of the methyl group transfer, gel retardation, and crosslinking of the enzyme subunits with glutaric aldehyde. In steady-state conditions, BamHI MTase displays a simple kinetic behavior toward a 20-mer oligonucleotide substrate. A linear dependence was observed for the reaction rate on the enzyme concentration and a Michaelis dependence of the reaction rate on the concentration of both substrates: S-adenosyl-L-methionine (SAM), the methyl group donor, and DNA, the methyl group acceptor. In independent experiments, the concentration of the 20-mer duplex or SAM was changed, the enzyme concentration being substantially lower then the concentrations of substrates. The kcat values determined in these conditions are in good agreement with one another and approximately equal to 0.05 s-1. The Km values for the duplex and SAM are 0.35 and 1.6 microM, respectively. An analysis of single turnover kinetics (at limiting concentration of the 20-mer oligonucleotide duplex) revealed the following characteristics of the BamHI MTase-dependent methylation of DNA. The value of rate constant of the DNA methylation step at the enzyme saturating concentration is on average 0.085 s-1, which is only 1.6 times higher than the value determined in steady-state conditions. Only one of two target cytidine residues was methylated in the course of the enzyme single turnover, which coincides with the earlier data on EcoRI MTase. Regardless of the order of the enzyme preincubation with SAM and DNA, both curves for the single turnover methylation are comparable. These results are consistent with the model of the random order of the productive ternary enzyme-substrate complex formation. In contrast to the relatively simple kinetic behavior of BamHI MTase in the steady-state reaction are the data on the enzyme binding of DNA. In gel retardation experiments, there was no stoichiometrically simple complexes with the oligonucleotide duplex even at low enzyme concentrations. The molecular mass of the complexes was so high that they did not enter 12% PAG. In experiments on crosslinking of the BamHI MTase subunits, it was shown that the enzyme in a free state exists as a dimer. Introduction of substoichiometric amounts of DNA into the reaction mixture results in pronounced multimerization of the enzyme. However, addition of SAM in saturating concentration at an excess of the oligonucleotide duplex over BamHI MTase converts most of the enzyme into a monomeric state.  相似文献   

5.
Binding of the Tet repressor to nonspecific and specific DNA leads to quenching of the Tet fluorescence by approximately 22% and approximately 35%, respectively. This effect is used for a direct, quantitative characterization of the binding equilibria and dynamics involved in the recognition of the operator by its repressor. From the dependence of the nonspecific binding constant on the ion concentration, it is concluded that nonspecific binding is almost completely driven by the entropy change resulting from the release of three to four Na+ ions from the double helix upon protein binding. Formation of the specific complex is driven by a higher entropy term resulting from the release of seven to eight Na+ ions and in addition by a free energy term of -33 kJ/mol from nonelectrostatic interactions, which are attributed to the specific contacts. The dynamics of the repressor-operator recognition are resolved by stopped-flow measurements at various salt concentrations and for different DNA chain lengths into two separate steps. The first step follows a second-order mechanism and results in an intermediate complex associated with formation of about three to four electrostatic contacts between protein and DNA; apparently, this complex is equivalent to the nonspecific complex. The existence of an intermediate is also indicated by experiments in mixed Na+-Mg2+ buffers, which can be described with high accuracy by competition of Mg2+ and protein. The intermediate complex is formed at a rate of 3 X 10(8) M-1 s-1 and is converted in the second reaction step to the specific complex with a rate constant of 6 X 10(4) s-1, which is almost independent of the salt concentration. Our interpretation and the parameters obtained from our model are confirmed by competition of nonspecific DNA with operator DNA for repressor binding. The observed maximal rate constant of 3 X 10(8) M-1 s-1 is very close to theoretical predictions for the association without a sliding mechanism. The very small dependence of the observed rate constants on the chain length shows that the Tet repressor is not able to slide over any substantial distance even at low salt concentrations. The question of a potential contribution from sliding under our experimental conditions is critically discussed. The absence of sliding in the case of the Tet repressor under physiological conditions is compared with the high sliding efficiency of the lac repressor and is discussed with respect to possible molecular mechanisms of sliding in relation to biological function.  相似文献   

6.
The phase and colloidal properties of phosphatidylcholine/fatty acid (PC/FA) mixed vesicles have been investigated by optical methods, acid-base titration, and theoretically as a function of temperature (5-80 degrees C), molar lipid ratio (0-1), lipid chain length (C14-C18), headgroup ionization (1.5 less than or equal to pH less than or equal to 10), vesicle concentration (0.05-32 mumol vesicle.dm-3, and ionic strength (0.005 less than or equal to J less than or equal to 0.25). Increasing the fatty acid concentration in PC bilayers causes the phase transition temperatures (at 4 less than or equal to pH less than or equal to 5) to rise until, for more than 2 FA molecules per PC molecule, the sample turbidity exhibits only two transitions corresponding to the chain-melting of the 1:2 stoichiometric complexes of PC/FA, and pure fatty acid. The former transition is into a nonlamellar phase and is accompanied by extremely rapid vesicle aggregation (with association rates on the order of Ca approximately 10(7) dm3.mol-1.s-1) and massive lipid precipitation. Fluid-phase vesicles with less than 2 FA per PC associate much more slowly (Ca approximately 10(3) dm3.mol-1.s-1), their aggregation being comparable to that of the ordered-phase liposomes. Under no conditions was the relation between the fatty acid concentration and the vesicle association rate for the fluid-phase vesicles linear. In contrast to the X-ray diffraction data, optical measurements reveal a 'pretransitional region' between the chain-melting temperature of the PC component and the temperature at which the gross transformation into a nonlamellar phase sets in. This is seen for all lipid mixtures investigated. On the relative temperature scale, lipids with different chain lengths behave qualitatively similarly; however, the effective association constants determined for samples of constant lipid concentration seem to decrease somewhat with the number of CH2 groups per chain. Fatty acid protonation, which yields electrically neutral bilayers, invariably increases the rate of vesicle association; we have measured, for example, Ca approximately 10(2) at pH approximately 7 and Ca approximately 10(7) dm3.mol-1.s-1 at pH approximately 4). Protonation of the phosphatidylcholine phosphate groups, which causes a net positive charge to accumulate on the lipid vesicles, initially increases (Ca approximately 10(8) dm3.mol-1.s-1) but ultimately decreases (Ca approximately 10(7) dm3.mol-1.s-1) the rate of association between PC/FA (1:2) mixed vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Thiyl radicals (RS) formed by the reaction of radiolytically generated OH radicals with thiols, e.g. 1,4-dithiothreitol (DTT), react with cis- and trans-2,5-dimethyltetrahydrofuran by abstracting an H atom in the alpha-position to the ether function (k approximately equal to 5 X 10(3) dm3 mol-1 s-1). The so-formed planar ether radical is 'repaired' by the thiol (k = 6 X 10(8) dm3 mol-1 s-1) thereby regenerating a cis- or trans-2,5-dimethyltetrahydrofuran molecule. In this reaction a thiyl radical is reproduced. Thus trans-2,5-Me2THF from cis-2,5-Me2THF and vice versa are formed in a chain reaction: at a dose rate of 2.8 X 10(-3) Gys-1 and a trans-2,5-Me2THF concentration of 1 X 10(-2) mol dm-3 using DTT as the thiol, G(cis-2,5-Me2THF) = 160 has been found. The chain reaction is very sensitive to impurities and also to disulphides such as those radiolytically formed. 2,5-Me2THF can be regarded as a model for the sugar moiety of DNA where the C(4')-radical is known to lead to DNA strand breakage. The possible role of cellular thiols in the repair of the C(4') DNA radical, and also the conceivable role of thiyl radicals inducing DNA strand breakage, are discussed.  相似文献   

8.
Nitrophenyl-EGTA and DM-nitrophen are Ca2+ cages that release Ca2+ when cleaved upon illumination with near-ultraviolet light. Laser photolysis of nitrophenyl-EGTA produced transient intermediates that decayed biexponentially with rates of 500,000 s-1 and 100,000 s-1 in the presence of saturating Ca2+ and 290,000 s-1 and 68,000 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. Laser photolysis of nitrophenyl-EGTA in the presence of Ca2+ and the Ca2+ indicator Ca-orange-5N produced a monotonic increase in the indicator fluorescence, which had a rate of 68,000 s-1 at pH 7.2 and 25 degrees C. Irradiation of DM-nitrophen produced similar results with somewhat slower kinetics. The transient intermediates decayed with rates of 80,000 s-1 and 11,000 s-1 in the presence of Ca2+ and 59,000 s-1 and 3,600 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. The rate of increase in Ca(2+)-indicator fluorescence produced upon photolysis of the DM-nitrophen: Ca2+ complex was 38,000 s-1 at pH 7.2 and 25 degrees C. In contrast, pulses in Ca2+ concentration were generated when the chelator concentrations were more than the total Ca2+ concentration. Photoreleased Ca2+ concentration stabilized under these circumstances to a steady state within 1-2 ms.  相似文献   

9.
The reactions of the primary water radicals with the biopolymer hyaluronic acid have been studied by pulse radiolysis. Bimolecular rate constants, expressed in terms of the disaccharide repeating sub-unit of hyaluronic acid, for OH., H. and eaq- were found to be 7 X 10(8) M-1 X s-1, 5 X 10(7) M-1 X s-1 and less than 5 X 10(6) M-1 X s-1, respectively. By comparing the viscosities of samples, gamma-irradiated in the steady state under a variety of conditions, with unirradiated controls, the efficiencies with which selected radicals cause chain breakage have been determined. Efficiencies of 30%, 15%, 0%, 0.2% and 5% were estimated for OH., H., eaq-, methanol radicals and tert-butanol radicals, respectively. The presence of oxygen during irradiation increased the extent of chain breakage by a factor of 1.75.  相似文献   

10.
Allan BW  Reich NO  Beechem JM 《Biochemistry》1999,38(17):5308-5314
The absolute temporal couplings between DNA binding and base flipping were examined for the EcoRI DNA methyltransferase. The binding event (monitored using rhodamine-x fluorescence anisotropy) was monophasic with a second-order on-rate of 1.1 x 10(7) M-1 s-1 相似文献   

11.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

12.
Human red cell permeability to the homologous series of methanol, ethanol, n-propanol, n-butanol, and n-hexanol was determined in tracer efflux experiments by the continuous flow tube method, whose time resolution is 2-3 ms. Control experiments showed that unstirred layers in the cell suspension were less than 2 X 10(-4) cm, and that permeabilities less than or equal to 10(-2) cm s-1 can be determined with the method. Alcohol permeability varied with the chain length (25 degrees C): Pmeth 3.7 X 10(-3) cm s-1, Peth 2.1 X 10(-3) cm s-1, Pprop 6.5 X 10(-3) cm s-1, Pbut less than or equal to 61 X 10(-3) cm s-1, Phex 8.7 X 10(-3) cm s-1. The permeability for methanol, ethanol, and n- propanol was concentration independent (1-500 mM). The permeability to n-butanol and n-hexanol, however, increased above the upper limit of determination at alcohol concentrations of 100 and 25 mM, respectively. The activation energies for the permeability to methanol, n-propanol, and n-hexanol were similar, 50-63 kJ mol-1. Methanol permeability was not reduced by p-chloromercuribenzene sulfonate (PCMBS), thiourea, or phloretin, which inhibit transport of water or hydrophilic nonelectrolytes. It is concluded (a) that all the alcohols predominantly permeate the membrane lipid bilayer structure; (b) that both the distribution coefficient and the diffusion coefficient of the alcohols within the membrane determine the permeability, and (c) that the relative importance of the two factors varies with changes in the chain length.  相似文献   

13.
The proton-translocating ATP-synthase of chloroplasts, CF0F1, was isolated and reconstituted into asolectin liposomes. CF0F1 can exist in at least four different states, oxidized or reduced, either inactive or active. These states are characterized by different kinetics of ADP binding: There is no binding of ADP to the inactive, oxidized state, the rate constant for ADP binding to the inactive, reduced states is 7.10(2) M-1.s-1. ADP binding to the active, reduced state occurs under deenergized conditions with 10(5) M-1.s-1 and transforms the enzyme into the inactive, reduced state. Parallel to the ADP-dependent inactivation, the enzyme can also inactivate without ADP binding with a first-order rate constant of 7.10(-3) M-1.s-1. With the active, reduced enzyme ATP-hydrolysis was measured under uni-site conditions as has been carried out with MF1 (Grubmeyer, C., Cross, R.C. and Penefsky, H.S. (1982) J. Biol. Chem. 257, 12092-12100). The rate constant for ATP binding is 10(6) M-1.s-1, the 'equilibrium constant' on the enzyme EADPPi/EATP is 0.4. The rate constants for Pi release and ADP release are 0.2 s-1 and o.1 s-1, respectively. This indicates that the enzyme carries out a complete turnover under uni-site conditions with rates much higher than that reported for MF1.  相似文献   

14.
The kinetics of the cleavage of superhelical plasmid DNA (pBR322) by the restriction endonuclease, BamHI, have been analyzed in terms a compartmental model consistent with the chemistry first proposed by Rubin and Modrich (Rubin, R. A., and Modrich, P. (1978) Nucleic Acids Res. 5, 2991-2997) for analysis of the kinetics of the restriction endonuclease, EcoRI. The model was defined in terms of two compartments representing DNA substrate (bound and free), two compartments representing nicked intermediate (bound and free), one compartment representing linear product, and one compartment for free enzyme. A simultaneous analysis of concentration changes over time of the three DNA forms (superhelical, nicked, and linear) at six different enzyme concentrations was undertaken employing this compartmental model using SAAM (Simulation Analysis And Modeling) software. Results showed that rate constants characterizing the association of enzyme with superhelical DNA (6.0 x 10(5) M-1 s-1) and nicked DNA (2.8 x 10(5) M-1 s-1) were similar in magnitude and rate constants characterizing cleavage of the first (1.2 x 10(-2) s-1) and second phosphodiester bonds (3.1 x 10(-2) s-1) were also similar. The analysis yields a kinetically determined equilibrium constant of 12.9 nM for the dissociation of nicked intermediate from the enzyme. The rate constant describing the release of the nicked intermediate from the enzyme has a value of 3.7 x 10(-3) s-1. By comparing the value of this release rate constant to the value of the constant describing the second cleavage event, it can be determined that only 10% of the nicked intermediate bound to the enzyme is released as free nicked DNA and that 90% of the nicked intermediate is processed to the linear form without being released. Hence, most of the DNA is cleaved as the result of a single enzyme-DNA recognition event. No steady state assumptions were made in the analysis. The approach was to directly solve the differential equations which described the kinetic processes using an interactive method. This study demonstrates the usefulness of this approach for the analysis of kinetics of protein-DNA interactions for the restriction endonucleases.  相似文献   

15.
Using the quenched flow technique the mechanism of seryl tRNA synthetase action has been investigated with respect to the presteady state kinetics of individual steps. Under conditions where the strong binding sites of the enzyme are nearly saturated and the steady state turnover number is about 1 s-1, rate constants of four different processes have been determined: steps connected with substrate associations are relatively slow (12 s-1 for the entire process); activation of serine is the rate determining step (about 1.2 s-1 in presence of tRNASer); whereas the transfer of serine onto tRNASer (35 s-1) and the dissociation of seryl tRNASer (70 s-1) are fast. Similar kinetic parameter seem to hold also for the steady state reactions. This conclusion is based on a detailed study of the substrate, product, and Mg2+ concentration dependence of the transfer reaction. The results also indicate that a second serine binding site is operative. Since the transfer of serine from a preformed adenylate complex onto tRNASer is fast, seryl adenylate seems to be a kinetically competent intermediate of the aminoacylation reaction although, of course, alternative mechanisms cannot be excluded.  相似文献   

16.
In the radiolysis of aqueous formate-containing solutions a chain reaction (i, ii) proceeds in the presence of N2O. CO2-. + N2O + H2O----CO2 + N2 + .OH + OH- (i) .OH + HCO2-.----CO2-. + H2O (ii) The chain length depends on the dose rate and the N2O concentration but not on the formate concentration. Typically, G(CO2) approximately 140 molecules (100 eV)-1 is found, with an equivalent amount of N2, at a dose rate of 3 X 10(-3) Gy s-1. The rate constant for the rate-determining step in this chain reaction has been calculated at k(i) = 1600 dm3 mol-1 s-1. The possible relevance of this chain reaction in radiation biological studies is briefly discussed.  相似文献   

17.
We have studied the kinetics of fusion of dipalmitoylphosphatidylcholine small unilamellar vesicles at 51 degrees C which is induced by bee venom melittin at a protein-to-lipid molar ratio of 1/60. This was done by following with a stopped-flow fluorometer the reduction in the ratio of the excimer to monomer fluorescence intensities of 1-palmitoyl-2-(10-pyrenyldecanoyl)-sn-glycero-3-phosphorylcholine that accompanies fusion. At a low melittin concentration and low ionic strength, for which case the protein is monomeric, the value of the rate constant for fusion is 0.006 s-1. This is much smaller than that of 0.06 s-1 obtained for a high melittin concentration at low ionic strength, i.e. for the protein in the tetrameric form which is not induced by a high salt concentration. The value of the rate constant for fusion for a low melittin concentration in the presence of 2 M NaCl, i.e. for the protein in the tetrameric form which is induced by a high salt concentration, is 0.12 s-1. This is twice as large as that for fusion induced by the tetramer in a low ionic strength solution. These findings show that the state of aggregation of the protein in solution and, to a lesser extent, electrostatic interactions play an important role in the kinetics of melittin-induced fusion of vesicles.  相似文献   

18.
The one-electron oxidation of DNA bases and single-stranded DNA was studied by pulse radiolysis of aqueous solutions from pH 7-7.4 at 20 degrees C. Thallic ions, Tl(II), were found to rapidly oxidize the purine nucleotides, deoxyguanosine 5'-monophosphate, k[Tl(II) + dGMP2-] = 3.4.10(9) M-1.s-1, and deoxyadenosine 5'-monophosphate, k[Tl(II) + dAMP2-] = 1.3.10(8) M-1.s-1. The reactivities of Tl(II) ions with model pyrimidine DNA bases, 1-methylcytosine and 1-methylthymine, were too low to be measured by pulse radiolysis, k less than 10(7) M-1.s-1. The Tl(II)-mediated oxidation of ssDNA, k = 2.8.10(8) M-1.s-1, produces DNA-guanyl radical, DNA-G.(-H), exclusively. The DNA-guanyl radical is found to be a potent oxidant in neutral media, E7 = 1.04 +/- 0.05 V. It rapidly oxidizes the aromatic amino acids in glycyl-tryptophan and tyrosine methyl ester, k = 3.6.10(7) M-1.s-1 and k = 1.7.10(8) M-1.s-1, respectively. These electron transfer processes indicate that a positive 'hole' may be transferred from DNA to a DNA-associated protein. The positive 'hole' in DNA can also be repaired by antioxidants, which are electron donors. The chemical repair of the DNA-guanyl radical by negatively charged antioxidants is slower than that by positively charged and neutral antioxidants.  相似文献   

19.
Hemerythrin from Siphonosoma cumanense has a trimeric structure consisting of identical subunits, which have no cooperativity nor Bohr effect on oxygen-binding. The trimer was dissociated into its monomers by the modification of the SH group of its cysteines with p-chloromercuriphenylsulfonic acid (PCMPS), which was monitored by stopped-flow of both spectrophotomeric and small angle X-ray scattering methods. The results showed that the process involved sequential modification of the SH groups, dissociation into monomers, and auto-oxidation of ferrous iron in the active center. The modification of the SH groups with PCMPS followed second-order kinetics with a rate constant of 1.8 M-1.s-1. The dissociation and auto-oxidation followed first-order kinetics with rate constants of 4 X 10(-3) s-1 and 5 X 10(-4) s-1, respectively. The obtained rate of auto-oxidation was much faster than that in the native state. These findings lead to the conclusion that the trimeric state of S. cumanense hemerythrin is necessary to prevent auto-oxidation.  相似文献   

20.
The binding of inositol 1,4,5-trisphosphate (InsP3) to a specific receptor induces the release of Ca2+ from an intracellular store. In the liver, the KD of a low affinity state of the receptor (RL) found at low Ca2+ concentration ([Ca2+]) is in close agreement with the EC50 of the InsP3-induced Ca2+ release. We have developed an experimental procedure for measuring the rate of dissociation of this low affinity [32P]InsP3-receptor complex in less than 1 s. When the receptor was in the RL state, two kinetic components, RL1 and RL2, were identified with respective rate constants (k(off)) of 1-2 s-1 and 0.03-0.06 s-1. Increasing the [Ca2+] up to 1 microM transformed the receptor into the high affinity state (RH) and decreased the dissociation rate constant to 2 x 10(-2) min-1. We also investigated the time course of the transformation of the receptor from the high affinity (RH) to the low affinity state (RL) after decreasing the [Ca2+] to less than 10 nM. This reversion was dramatically dependent on temperature: at 4 degrees C, the receptor was locked in the RH state, whereas at 37 degrees C the receptor reverted to the RL state with a half-time of less than 1 s. The reversion from the RH state to the RL one is associated to a recovery of InsP3-induced 45Ca2+ release on permeabilized hepatocytes. The rapid and reversible transformation of the InsP3 receptor from an active to an inactive state may be a key event in the Ca2+ release process in intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号