首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out to determine the influence of short chain fatty acids (SCFA) on spleen and mesenteric lymph node lymphocyte proliferation, goblet cells and apoptosis in the mouse small intestine during invasion by Trichinella spiralis. BALB/c mice were infected with 250 larvae of T. spiralis. An SCFA water solution containing acetic, propionic and butyric acids (30:15:20 mM) was administered orally starting 5 days before infection and ending 20 days post infection (dpi). Fragments of the jejunum were collected by dissection 7 and 10 dpi, and were examined for apoptotic cells in the lamina propria of the intestinal mucosa, and for goblet cells. The proliferation index of the cultured spleen and mesenteric lymph node lymphocytes with MTT test was also determined. The orally administered SCFA solution decreased the proliferation of mesenteric lymph node lymphocytes in the mice infected with T. spiralis at both examination times, but did not influence the proliferative activity of the spleen cells. Seven dpi, both in the spleen and mesenteric lymph nodes, the highest proliferation index of concanavalin A (Con A)-stimulated lymphocytes was found in the group of uninfected animals receiving SCFA animals. This tendency could still be seen 10 dpi in the mesenteric lymph nodes but not in the spleen, where the proliferation index in this group had significantly decreased. In vitro studies revealed, that butyric and propionic acids added to the cell cultures suppressed the proliferation of Con A-stimulated mesenteric lymph nodes and spleen lymphocytes taken from uninfected and T. spiralis-infected mice. Acetic acid stimulated proliferation of splenocytes taken from uninfected mice but did not affect lymphocyte proliferation in mesenteric lymph nodes from uninfected or infected mice. Orally administered SCFA increased the number of goblet cells found in the epithelium of the jejunum 7 dpi, but this number had decreased 10 dpi. The number of apoptotic cells in the lamina propria of the intestinal mucosa of animals infected with the T. spiralis and receiving SCFA was also lower, particularly 10 dpi. The above results show that SCFA can participate in the immune response during the course of trichinellosis in mice.  相似文献   

2.
Different attempts have been made to improve the health status of humans and animals by increasing the intestinal production of short-chain fatty acids (SCFA) derived from non-digestible carbohydrates fermentation. In this paper we investigate the in vitro production of short-chain fatty acids (SCFA) after addition of inulin, propionibacteria or a combination of both in an experimental model of mice cecal slurries. The development of bacterial genera which are usually stimulated by inulin addition was also investigated. According to our experimental data, acetic acid and butyric acids concentrations increased after incubation in slurries that had no supplements. By contrast, butyric acid concentrations remained in the basal value when supplements were used. Fermentation of only inulin did not increase the concentration of total SCFA. Propionibacterium acidipropionici CRL1198 improved the production of propionic acid in cecal slurries when it was added alone, but the effect was more noticeable in the combination with inulin. A modulation of the global fermentative activity of the cecal microbiota was evidenced by the increase on the ratio propionic acid/SCFA in supplementations with propionibacteria. Statistical analysis of data demonstrated that samples from homogenates with propionibacteria alone or combined with inulin belong to the same cluster. The presence of propionibacteria limited the growth of Bacteroides fragilis and Clostridium hystoliticum groups in slurries with and without inulin. The growth of Bifidobacterium was not modified and the stimulating effect of inulin on lactobacilli disappeared in the presence of propionibacteria. In conclusion, dairy propionibacteria are potential candidates to develop new functional foods helpful to ensure the intestinal production of SCFA during inulin supplementation and to control the overgrowth of bacteria belonging to Bacteroides and Clostridium genera.  相似文献   

3.
The premeabilities of planar lipid bilayer (egg phosphatidylcholine- decane) membranes to butyric and formic acids were measured by tracer and pH electrode techniques. The purposes of the study were (a) to establish criteria for the applicability of each method and (b) to resolve a discrepancy between previously published permeabilities determined using the different techniques. Tracer fluxes of butyric acid were measured at several concentrations and pH's. Under symmetrical conditions the one-way flux of butyric acid(J) is described by 1/J = 1/Pul ([HA] + [A-]) + 1/Pm([HA]), where Pul and Pm are the unstirred layer and membrane permeability coefficients. Pm determined in this manner is 950 x 10(4) cm s-1. Published values for the butyric acid permeability for egg phosphatidylcholine-decane bilayers are 11.5 x 10(-4) (Wolosin and Ginsburg, 1975) and 640 x 10(-4) cm s-1 (Orbach and Finkelstein, 1980). Wolosin and Ginsburg measured net fluxes from a solution of pH = Pka into an unbuffered solution containing a pH electrode. Orbach and Finkelstein measured tracers fluxes under symmetrical conditions at pH 7.4. We reproduced the results of Wolosin and Ginsburg and showed that their apparently low Pm was caused by unstirred layer effects in their poorly buffered solutions. The permeability to formic acid (pKa = 3.75) measured by both tracer and pH electrode techniques was approximately 10(-2) cm s-1. However, if pm greater than Pul, the pH electrode technique cannot be used for measuring the permeabilities of weak acids with pKa's greater than approximately 4.  相似文献   

4.
A new liquid chromatography–mass spectrometry method is described to determine concentrations of the short chain fatty acids acetic acid, propionic acid and butyric acid (SCFAs) in human blood plasma. The method is based on reversed phase chromatography followed by post-column neutralization of the mobile phase with ammonia and a consecutive measurement of the SCFAs ammonia adducts using negative electro spray ionization. Sample preparation involved simple organic acid deproteinization, resulting in 100% recovery. SCFAs eluted baseline separated within a 25 min run cycle. A linear response was obtained in the range between 0 and 250 μmol/l (R2 ranged from 0.997 to 0.9999). The limit of detection ranged from 0.05 μmol/l for propionic and butyric acid and 0.1 μmol/l for acetic acid. The method was tested by analyzing plasma of arterial blood, from portal vein and hepatic vein blood from patients undergoing a pylorus-preserving pancreaticoduodenectomy. As expected, the highest SCFA concentrations were found in portal plasma, hepatic vein levels were in between, while arterial concentrations were lowest. This newly developed method is suitable to determine SCFA concentrations in human plasma samples.  相似文献   

5.
Hati  Subrota  Patel  Maulik  Mishra  Birendra K  Das  Sujit 《Annals of microbiology》2019,69(11):1191-1199
Vitamins and SCFA (short-chain fatty acids) production from Lactobacillus isolates are studied due to its health benefits to the human hosts. Lactobacillus strains are widely used in fermented foods, and few of them are reported with vitamin and SCFA production potential. Therefore, in the present study, vitamins and SCFA production capability of isolates were studied to find the potent Lactobacillus cultures for value-added functional food product development. Five Lactobacillus strains, i.e., KGL2, KGL3A, KGL4, RNS4, and WTS4, were isolated from rice-based traditional fermented foods of Garo Hills, Meghalaya, India. All the well grown isolates were morphologically, physiologically, and genetically characterized. Then, vitamins and SCFA were estimated using HPLC based methods. Vitamins produced in vitamins free assay medium and SCFA in milk medium are produced by Lactobacillus. Lactic acid bacteria produce essential vitamins like riboflavin, folate, cobalamin, and SCFA which have health impacts (anti-obesity, anti-diabetics, anti-microbial, and other chronic diseases prevention) to the host. These vitamins are essential for cellular and metabolic growth of living system. In the study, five potent Lactobacillus isolates viz., KGL2 (Lactobacillus fermentum), KGL3A (Lactobacillus plantarum), KGL4 (Lactobacillus fermentum), RNS4 (Lactobacillus rhamnosus), and WTS4 (Lactobacillus fermentum) were considered for vitamins (B2, B12, and B9) and SCFA productions (lactate, butyrate, and acetate). However, KGL3A had shown highest B2 production (0.7 μg/ml) while KGL2 exhibited maximum B12 production (0.05 μg/ml) after 36 h. Moreover, WTS4 attributed highest folate production (0.09 μg/ml) after 24 h. In addition, RNS4 reported the maximum short-chain fatty acid production (0.77 g/l acetic acid, 0.26 g/l lactic acid, and 0.008 g/l butyric acid respectively). Potent Lactobacillus isolates from traditional fermented foods of Garo Hills, Meghalaya, India (North East Part of India) showed maximum production of B2, B9, and B12 as well as short-chain fatty acids and could be used for their application as health beneficial functional fermented dairy products.  相似文献   

6.
Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid.  相似文献   

7.
In this article, we report tuning of the sensory capability of an amino acid (tryptophan) in a biomimicking anionic micellar nano cage. It has been shown that anionic surfactant concentration dictates the sensing behavior of tryptophan toward body malodor component (butyric acid) generated by bacterial degradation of tributyrin. We have proposed a fluorescence quenching mechanism that is based on short-chain fatty acid (SCFA) proximity with tryptophan present at the micelle-water interface. Anionic surfactant-induced fluorescent sensor activity of tryptophan exhibits high sensitivity (detection limit up to 10 μM) and specific selectivity (toward SCFA, < C12) in aqueous solution. We also determined antibacterial efficacy of various zinc salts based on the sensory activity of tryptophan, which has been correlated with the established resazurin assay.  相似文献   

8.
Adventitious roots, generated using leaf explants of P. nodiflora, and meristem explants of L. reticulata, were cultured on Murashige and Skoog (MS) medium supplemented with napthylacetic acid (2 microM) and indole butyric acid (3 microM) respectively. After 30 days, subculturing of roots in liquid MS medium with napthylacetic acid (1.5 microM) for P. nodiflora and indole butyric acid (3 microM) for L. reticulata afforded considerable increase in root mass. HPTLC profiles and microscopic examination of transverse sections of in vitro and naturally grown roots provided information on secondary metabolite accumulation vis-à-vis developmental stages of the root.  相似文献   

9.
Coloileal reflux episodes trigger specialized ileal motor activities and inhibit gastric motility in pigs. The initiation of these events requires the detection by the distal ileum of the invading colonic contents that differ from the ileal chyme primarily in short-chain fatty acid (SCFA) concentrations. In addition to the already described humoral pathway, this detection might also involve ileal vagal afferents. Sensitivity to SCFA of 12 ileal vagal units was investigated in anesthetized pigs with single-unit recording at the left cervical vagus. SCFA mixtures (0.35, 0.7, and 1.4 mol/l) containing acetic, propionic, and butyric acids in proportions identical to that in the porcine cecocolon were compared with isotonic and hypertonic saline. All units behaved as slowly adapting mechanoreceptors (half-adaptation time = 35.4 +/- 15.89 s), and their sensitivity to local mechanical probing was suppressed by local anesthesia; 7 units significantly decreased their spontaneous firing with 0.7 and 1.4 but not 0.35 mol/l SCFA infusion compared with hypertonic or isotonic saline. Similarly, the response induced by distension in the same seven units was reduced (5 neurons) or abolished (2 neurons) after infusion of 0.7 (22.8 +/- 2.39 impulses/s) and 1.4 (30.3 +/- 2.12 impulses/s) mol/l SCFA solutions compared with isotonic saline (38.6 +/- 4.09 impulses/s). These differences in discharge were not the result of changes in ileal compliance, which remained constant after SCFA. In conclusion, SCFA, at concentrations near those found during coloileal reflux episodes, reduced or abolished mechanical sensitivity of ileal vagal afferents.  相似文献   

10.
The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.  相似文献   

11.
The in vitro fermentation of several purified galacto-oligosaccharides (GOS), specifically the trisaccharides 4′-galactosyl-lactose and 6′-galactosyl-lactose and a mixture of the disaccharides 6-galactobiose and allolactose, was carried out. The bifidogenic effect of GOS at 1 % (w/v) was studied in a pH-controlled batch culture fermentation system inoculated with healthy adult human faeces. Results were compared with those obtained with a commercial GOS mixture (Bimuno-GOS). Changes in bacterial populations measured through fluorescence in situ hybridization and short-chain fatty acid (SCFA) production were determined. Bifidobacteria increased after 10-h fermentation for all the GOS substrates, but the changes were only statistically significant (P?<?0.05) for the mixture of disaccharides and Bimuno-GOS. Acetic acid, whose formation is consistent with bifidobacteria metabolism, was the major SCFA synthesized. The acetate concentration at 10 h was similar with all the substrates (45–50 mM) and significantly higher than the observed for formic, propionic and butyric acids. All the purified GOS could be considered bifidogenic under the assayed conditions, displaying a selectivity index in the range 2.1–3.0, which was slightly lower than the determined for the commercial mixture Bimuno-GOS.  相似文献   

12.
Faecalibacterium prausnitzii (F. prausnitzii) is one of the most abundant bacteria in the human intestine, with its anti-inflammatory effects establishing it as a major effector in human intestinal health. However, its extreme sensitivity to oxygen makes its cultivation and physiological study difficult. F. prausnitzii produces butyric acid, which is beneficial to human gut health. Butyric acid is a short-chain fatty acid (SCFA) produced by the fermentation of carbohydrates, such as dietary fibre in the large bowel. The genes encoding butyryl-CoA dehydrogenase (BCD) and butyryl-CoA:acetate CoA transferase (BUT) in F. prausnitzii were cloned and expressed in E. coli to determine the effect of butyric acid production on intestinal health using DSS-induced colitis model mice. The results from the E. coli Nissle 1917 strain, expressing BCD, BUT, or both, showed that BCD was essential, while BUT was dispensable for producing butyric acid. The effects of different carbon sources, such as glucose, N-acetylglucosamine (NAG), N-acetylgalactosamine (NAGA), and inulin, were compared with results showing that the optimal carbon sources for butyric acid production were NAG, a major component of mucin in the human intestine, and glucose. Furthermore, the anti-inflammatory effects of butyric acid production were tested by administering these strains to DSS-induced colitis model mice. The oral administration of the E. coli Nissle 1917 strain, carrying the expression vector for BCD and BUT (EcN-BCD-BUT), was found to prevent DSS-induced damage. Introduction of the BCD expression vector into E. coli Nissle 1917 led to increased butyric acid production, which improved the strain’s health-beneficial effects.  相似文献   

13.
The aim of this study was to assess the effects of hop cones (Humulus lupulus L.) from two varieties Aurora and Dana, differing in their α- and β-acid contents, on rumen microbial activity measured with in vitro gas production kinetics and short-chain fatty acids (SCFA) production. Hop cones were added to the total mixed dairy cow ration (CONT) in concentrations simulating a cow’s daily intake of 50, 100 and 200 g of hop cones – the concentrations of hop cones expressed on a substrate basis were 43, 82 and 153 mg/g of substrate. Substrates were anaerobically incubated in glass syringes, and gas production kinetic parameters were determined by fitting data with the Gompertz model. Gas produced after 24 h (Gas24), maximum fermentation rate (MFR) and time of maximum fermentation rate (TMFR) were calculated from the estimated gas production kinetic parameters. After 24 h of incubation, the fermentation liquids of each substrate were taken for the determination of SCFA. Increasing the hop cone concentration decreased the total potential gas production, Gas24, MFR and shortened TMFR. The highest hop cone concentration significantly decreased acetic and butyric acid productions and total SCFA production after 24 h of incubation, but not propionic acid production, resulting in a decreased ratio between acetic acid and propionic acid.  相似文献   

14.
The objective of the present study was to construct a system that re-creates the conditions of fermentation and absorption of the human proximal colon. The model was constructed using a glass tube with an internal dialysis membrane tube. The food substrate was fed into the dialysis membrane three times a day simulating a typical human feeding. The substrate contained 58% carbohydrates, 35% proteins, 3% fiber, 3% starch, and 1% lipids on dry weight base, with 90% moisture. The inoculum was a fecal culture propagated in TSB. The intestinal absorption was simulated using a polyethylene glycol (PEG) solution running continuously outside the dialysis membrane. All microorganisms increased their counts after inoculation, and reached higher counts generally after substrate feed. The most important short chain fatty acids (SCFA: acetic, propionic and butyric acids) were analyzed, and their concentrations inside and outside the membrane were significantly different due to the extraction efficiency of the PEG solution. The greatest production occurred at 48 h. SCFA ratios showed that at the beginning, acetate was the predominant compound, but after 12 h the proportion of butyrate increased and the acetate was decreased. This SCFA production pattern is similar to that reported for the proximal colon in live systems. Continuous operation of the colon model for 48 h was enough to reveal the development of microorganisms and SCFA production. This model reproduced the conditions of the human proximal colon adequately and can be used to study the development of colonic microbiota.  相似文献   

15.
A butyrylesterase from human red cells was prepared to homogeneity using DEAE-cellulose, Ultrogel ACA-34, DEAE-Sephacel, and precipitation with 1.5 M (NH4)2SO4. The yield was 25-35% relative to the enzyme activity of the hemolysate. Because of its preference for butyric acid esters the enzyme was designated a butyrylesterase. With alpha-naphthyl butyrate the Km was 7.6 microM and the kcat, 48 s-1. The molecular weight was 340,000 and the subunit weight 85,000, indicating a tetrameric structure. The isoelectric pH was 4.0. The enzyme preparation did not contain cystine. Sialic acid or other carbohydrate components could not be detected. The enzyme was irreversibly inhibited by organophosphate esters and the second-order rate constant was 192 M-1 s-1 for diethyl p-nitrophenyl phosphate. For the brain enzyme the constant was 206 M-1 s-1. The enzyme was irreversibly inhibited by sulfhydryl reagents, indicating that the enzyme is a sulfhydryl-dependent serine esterase. The enzyme was identical to the butyrylesterase from human brain, and the two enzymes were immunochemically identical. An amino acid ester has been shown to be split at a higher rate than butyric acid esters; however, the specificity constant (kcat/Km) was lower for the amino acid ester than for the butyric acid ester. The enzyme did not exhibit amidase activity.  相似文献   

16.
This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been designed to be complementary to the dynamic multi-compartmental system that simulates conditions in the stomach and small intestine described by Minekus et al. [Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ (1995) ATLA 23:197–209]. High densities of microorganisms, comparable to those found in the colon in vivo, were achieved by absorption of water and dialysis of metabolites through hollow-fibre membranes inside the reactor compartments. The dense chyme was mixed and transported by peristaltic movements. The potential of the system as a tool to study fermentation was demonstrated in experiments with pectin, fructo-oligosaccharide, lactulose and lactitol as substrates. Parameters such as total acid production and short-chain fatty acid (SCFA) patterns were determined with time to characterize the fermentation. The stability of the microflora in the system was tested after inoculation with fresh fecal samples and after inoculation with a microflora that was main-tained in a fermenter. Both approaches resulted in total anaerobic bacterial counts higher than 1010 colony-forming units/ml with physiological levels of Bifidobacterium, Lactobacillus, Enterobacteriaceae and Clostridium. The dry matter content was approximately 10%, while the total SCFA concentration was maintained at physiological concentrations with similar molar ratios for acetic acid, propionic acid and butyric acid as measured in vivo. Received: 4 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

17.
Exposure to short-chain fatty acids (SCFA) is one of the stress conditions Salmonella typhimurium encounters during its life cycle, because SCFA have been widely used as food preservatives and SCFA are also present at high concentrations in the gastrointestinal tracts of host animals. The effects of SCFA on the acid resistance of the organism were examined in an attempt to understand the potential role of SCFA in the pathogenesis of S. typhimurium. The percent survival of S. typhimurium at pH 3.0 was determined after exposure to SCFA for 1 h at pH 7.0. The percent acid survival, which varied depending on the SCFA species and the concentration used, was 42 after exposure to 100 mM propionate at pH 7.0 under aerobic incubation conditions, while less than 1% could survive without exposure. The SCFA-induced acid resistance was markedly enhanced by anaerobiosis (64%), lowering pH conditions (138% at pH 5.0), or increasing incubation time (165% with 4 h) during exposure to propionic acid. When protein synthesis during exposure to propionate was blocked by chloramphenicol, the percent acid survival was less than 1, indicating that the protein synthesis induced by exposure to propionate is required for the induction of the acid resistance. The percent acid survival determined with the isogenic mutant strains defective in acid tolerance response revealed that AtrB protein is necessary for the full induction of acid resistance by exposure to propionate, while unexpectedly, inactivation of PhoP significantly increased acid resistance over that of the wild type (P < 0.05). The results suggest that the virulence of S. typhimurium may be enhanced by increasing acid resistance upon exposure to SCFA during its life cycle and further enhanced by anaerobiosis, low pH, and prolonged exposure time.  相似文献   

18.
Huang J  Cai J  Wang J  Zhu X  Huang L  Yang ST  Xu Z 《Bioresource technology》2011,102(4):3923-3926
Butyric acid is an important specialty chemical with wide industrial applications. The feasible large-scale fermentation for the economical production of butyric acid requires low-cost substrate and efficient process. In the present study, butyric acid production by immobilized Clostridium tyrobutyricum was successfully performed in a fibrous-bed bioreactor using Jerusalem artichoke as the substrate. Repeated-batch fermentation was carried out to produce butyric acid with a high butyrate yield (0.44 g/g), high productivity (2.75 g/L/h) and a butyrate concentration of 27.5 g/L. Furthermore, fed-batch fermentation using sulfuric acid pretreated Jerusalem artichoke hydrolysate resulted in a high butyric acid concentration of 60.4 g/L, with the yield of 0.38 g/g and the selectivity of ∼85.1 (85.1 g butyric acid/g acetic acid). Thus, the production of butyric acid from Jerusalem artichoke on a commercial scale could be achieved based on the system developed in this work.  相似文献   

19.

Background

Prebiotics, probiotics and synbiotics can be used to modulate both the composition and activity of the gut microbiota and thereby potentially affecting host health beneficially. The aim of this study was to investigate the effects of eight synbiotic combinations on the composition and activity of human fecal microbiota using a four-stage semicontinuous model system of the human colon.

Methods and Findings

Carbohydrates were selected by their ability to enhance growth of the probiotic bacteria Lactobacillus acidophilus NCFM (NCFM) and Bifidobacterium animalis subsp. lactis Bl-04 (Bl-04) under laboratory conditions. The most effective carbohydrates for each probiotic were further investigated, using the colonic model, for the ability to support growth of the probiotic bacteria, influence the composition of the microbiota and stimulate formation of short-chain fatty acids (SCFA).The following combinations were studied: NCFM with isomaltulose, cellobiose, raffinose and an oat β-glucan hydrolysate (OBGH) and Bl-04 with melibiose, xylobiose, raffinose and maltotriose. All carbohydrates showed capable of increasing levels of NCFM and Bl-04 during fermentations in the colonic model by 103–104 fold and 10–102 fold, respectively. Also the synbiotic combinations decreased the modified ratio of Bacteroidetes/Firmicutes (calculated using qPCR results for Bacteroides-Prevotella-Porphyromonas group, Clostridium perfringens cluster I, Clostridium coccoides - Eubacterium rectale group and Clostridial cluster XIV) as well as significantly increasing SCFA levels, especially acetic and butyric acid, by three to eight fold, as compared to the controls. The decreases in the modified ratio of Bacteroidetes/Firmicutes were found to be correlated to increases in acetic and butyric acid (p = 0.04 and p = 0.03, respectively).

Conclusions

The results of this study show that all synbiotic combinations investigated are able to shift the predominant bacteria and the production of SCFA of fecal microbiota in a model system of the human colon, thereby potentially being able to manipulate the microbiota in a way connected to human health.  相似文献   

20.
Gut microbiota and short‐chain fatty acids (SCFAs) are associated with the development of various human diseases. In this study, we examined the role of astragaloside IV in modulating mouse gut microbiota structure and the generation of SCFAs, as well as in slow transit constipation (STC). An STC model was established by treating mice with loperamide, in which the therapeutic effects of astragaloside IV were evaluated. The microbiota community structure and SCFA content were analysed by 16S rRNA gene sequencing and gas chromatography‐mass spectrometry, respectively. The influence of butyrate on STC was assessed using a mouse model and Cajal cells (ICC). Astragaloside IV promoted defecation, improved intestinal mobility, suppressed ICC loss and alleviated colonic lesions in STC mice. Alterations in gut microbiota community structure in STC mice, such as decreased Lactobacillus reuteri diversity, were improved following astragaloside IV treatment. Moreover, astragaloside IV up‐regulated butyric acid and valeric acid, but decreased isovaleric acid, in STC mouse stools. Butyrate promoted defecation, improved intestinal mobility, and enhanced ICC proliferation by regulating the AKT–NF‐κB signalling pathway. Astragaloside IV promoted intestinal transit in STC mice and inhibited ICC loss by regulating the gut microbiota community structure and generating butyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号