首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical properties of hydrated multilamellar sample of 1,2-dimyristamido-1,2-deoxyphosphatidylcholine (DDPC) were investigated by means of differential scanning calorimetry (DSC), static X-ray diffraction, and simultaneous DSC and X-ray diffraction. The DDPC is a synthetic sphingomyelin analogue and has two amide bonds in its hydrophobic parts. This paper reports on metastable phase behavior of the hydrated DDPC sample. By cooling from a chain-melted state at the rates of greater than 4 °C min−1, hydrated DDPC bilayers form a metastable gel phase. In the gel phase, the hydrophobic chains are tilted with respect to the bilayer normal, as like the gel phase of glycero-phosphatidylcholines. By heating, the metastable gel phase is transformed in to a stable phase associated with an exothermic heat event at 18.3 °C (ΔH = 14.6 kJ mol−1) and then the stable phase is transformed into a liquid-crystalline phase at 25.6 °C (ΔH = 42 kJ mol−1). The incubation at 17 °C for more than 1 h also induces the formation of the stable phase. In the stable phase, the hydrophobic chains are packed into highly ordered crystal-like structure. However, the X-ray diffraction pattern of the stable phase suggested that the entire DDPC molecules do not form a two-dimensional molecular ordered lattice, differing from normal subgel phase of glycero-phosphatidylcholines. The structure and phase behavior of DDPC revealed by the present study are discussed from the viewpoint of hydrogen bonds.  相似文献   

2.
The sulfur analogue of sphingomyelin was designed and stereoselectively synthesized from S-benzyl-N-Boc-cysteine. The introduction of the phosphoryl choline moiety was successfully achieved by our own method using 2-bromoethyl dimethyl phosphite and carbon tetrabromide followed by a trimethylamine treatment. The synthesized compound proved to be a useful substrate for monitoring the enzyme activity of sphingomyelinase by detecting the liberated thiol group with a thiol-sensitive reagent.  相似文献   

3.
The thermotropic phase behavior of cholesterol monohydrate in water was investigated by differential scanning calorimetry, polarizing light microscopy, and x-ray diffraction. In contrast to anhydrous cholesterol which undergoes a polymorphic crystalline transition at 39 degrees C and a crystalline to liquid transition at 151 degrees C, the closed system of cholesterol monohydrate and water exhibited three reversible endothermic transitions at 86, 123, and 157 degrees C. At 86 degrees C, cholesterol monohydrate loses its water of hydration, forming the high temperature polymorph of anhydrous cholesterol. At least 24 hours were required for re-hydration of cholesterol and the rate of hydration was dependent on the polymorphic crystalline form of anhydrous cholesterol. At 123 degrees C, anhydrous crystalline cholesterol in the presence of excess water undergoes a sharp transition to a birefringent liquid crystalline phase of smectic texture. The x-ray diffraction pattern obtained from this phase contained two sharp low-angle reflections at 37.4 and 18.7 A and a diffuse wide-angle reflection centered at 5.7 A, indicating a layered smectic type of liquid crystalline structure with each layer being two cholesterol molecules thick. The liquid crystalline phase is stable over the temperature range of 123 to 157 degrees C before melting to a liquid dispersed in water. The observation of a smectic liquid crystalline phase for hydrated cholesterol correlates with its high surface activity and helps to explain its ability to exist in high concentrations in biological membranes.  相似文献   

4.
Carbohydrates, particularly disaccharides, have been shown to accumulate in organisms as protective solutes during periods of stress such as freezing and desiccation. Cholesterol and lipid derivatives containing the protective carbohydrates galactose or maltose, O-[11-(1-beta-D-galactosyloxy)-3,6,9-trioxaundecanyl]ol (TEC-GAL), O-[11-(1-beta-D-maltosyloxy)-3,6,9-trioxaundecanyl]ol (TEC-MAL), and 14-(galactosyloxy)-N,N-dimethyl-O-(dipalmitoylphosphatidyl)- 6,9,12-trioxa-3- azoniatetradecanol (DP-GAL), have been synthesized to investigate the interaction of a protective carbohydrate moiety tethered to the 1,2-dipalmitoylphosphatidylcholine (DPPC) bilayer surface. Toward this goal, we have investigated the calorimetric and infrared spectroscopic behavior of mixtures of DPPC codried with these glycolipids. The synthetic glycolipids are shown to decrease significantly the main transition temperature (max Cp) of dry DPPC with a concomitant reduction in the cooperativity of the transition, as evidenced by a decrease in the enthalpy with increasing glycolipid. The decrease in transition temperature is shown to be related to chain melting monitored by the CH2 symmetric stretch frequency through the transition using FTIR. We also present evidence that the glycolipids interact with the interfacial region of DPPC, as shown by the decrease in the phosphate symmetric stretch intensity with increasing concentration of glycolipid. These observed effects are similar to the action of bulk protective sugars with DPPC; however, the concentration of glycolipid and the associated carbohydrate concentration needed to effect the observed changes are reduced compared to the quantity of bulk carbohydrate previously shown to give similar results with DPPC.  相似文献   

5.
X-ray diffraction intensities for lamellar repeats, h = 1 to 7, and wide-angle x-ray scattering were measured for the gel phase of fully hydrated dipalmitoylphosphatidylcholine. A hybrid model, which represents the electron density along the lamellar repeat direction as a continuous function composed of constant strips and superimposed Gaussians, is defined. The data were used to determine the best parameters in hybrid models and also in the older strip models. The most successful results were obtained when the density of the methylene region was constrained to the value obtained from the wide-angle scattering. Further analysis utilized the lipid volume obtained from absolute specific volume measurements. Together with the fundamental relations derived in the previous paper, the electron density modeling yielded the headgroup volume (340 +/- 10 A3) and the methylene volume (25.3 +/- 0.2A3). The results were in agreement whether the hybrid model or the strip model was used and whether our data or the data of Torbet and Wilkins were used. Additional structural results, such as the area (45.9 +/- 2.0 A2) and the number of waters of hydration per lipid (10.6 +/- 2.0), required one additional piece of information, which we took to be the tilt angle theta, which is 30 +/- 3 degrees from other experiments in the literature. Absolute electron density profiles, which clearly indicate two features in the headgroup region, are presented. The analysis yielded an accurate value of F(0), which contributes to the continuous scattering transform F(X), which is also given.  相似文献   

6.
The synthesis and characterization of an artificial boundary lipid, 1,2-dimyristoylamido-1,2-deoxyphosphatidylcholine (DDPC), are described. DDPC has two amide bonds instead of ester bonds of regular lecithins such as 1,2-dimyristoylphosphatidylcholine (DMPC). In differential scanning calorimetry (DSC) measurements, DDPC gave two endothermic peaks: one was at 18.0 degrees C (delta H = 10.74 kJ.mol-1) and the other at 23.0 degrees C (delta H = 12.91 kJ.mol-1). The former peak was sharp and considered to be the phase transition of the hydrocarbon region, while the latter was assigned to the melt of the hydrogen-belt formed by the amide groups of DDPC. Addition of DDPC to DMPC made the DMPC membrane less fluid in the region close to the surface, and significantly increased the reconstitution efficiency of glycophorin into the membrane. This effect of DDPC was much larger than that of naturally occurring lipid, sphingomyelin.  相似文献   

7.
R A Demel  F Paltauf  H Hauser 《Biochemistry》1987,26(26):8659-8665
The monolayer properties and thermal behavior of different phosphatidylserines are presented. At neutral pH and 22 degrees C, saturated phosphatidylserines form condensed monolayers while unsaturated phosphatidylserines form liquid-expanded films. Under similar conditions, dimyristoylphosphatidylserine undergoes a transition from the liquid-expanded to the condensed state. At pH 4 and 22 degrees C, the surface pressure-area isotherms are shifted to smaller areas relative to the monolayers recorded at neutral pH. The condensation observed at pH 4 is close to that produced at pH 7.4 by the addition of 10 mM CaCl2. As regards the molecular packing in monolayers and the thermal behavior, 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) and its ether analogue are similar, albeit not identical. Below 30 mN/m, monolayers of the ether analogue are even more condensed than those of DPPS. The order-disorder transition of the ether analogue occurs usually at higher temperatures than that of the diacyl compound. Sonicated phosphatidylserine dispersions consisting of small unilamellar vesicles show anomalous thermal properties compared to sonicated phosphatidylcholine dispersions. They exhibit sharp order-disorder transitions at similar or even slightly elevated temperatures compared to unsonicated phosphatidylserine dispersions. This anomaly is explained in terms of a pH gradient across the bilayer membrane of the small unilamellar phosphatidylserine vesicle. The internal surface pH is more acidic than the external pH, leading to some protonation of phosphatidylserine molecules. This in turn leads to a condensation of phosphatidylserine molecules on the inner bilayer surface. Such a gradient is proposed to be responsible for the thermodynamic stability of highly curved negatively charged bilayer vesicles.  相似文献   

8.
Quantitative structures are obtained at 30 degrees C for the fully hydrated fluid phases of palmitoyloleoylphosphatidylcholine (POPC), with a double bond on the sn-2 hydrocarbon chain, and for dierucoylphosphatidylcholine (di22:1PC), with a double bond on each hydrocarbon chain. The form factors F(qz) for both lipids are obtained using a combination of three methods. (1) Volumetric measurements provide F(0). (2) X-ray scattering from extruded unilamellar vesicles provides /F(qz)/ for low q(z). (3) Diffuse X-ray scattering from oriented stacks of bilayers provides /F(qz)/ for high q(z). Also, data using method (2) are added to our recent data for dioleoylphosphatidylcholine (DOPC) using methods (1) and (3); the new DOPC data agree very well with the recent data and with (4) our older data obtained using a liquid crystallographic X-ray method. We used hybrid electron density models to obtain structural results from these form factors. The result for area per lipid (A) for DOPC 72.4 +/- 0.5 A(2) agrees well with our earlier publications, and we find A = 69.3 +/- 0.5 A2 for di22:1PC and A = 68.3 +/- 1.5 A2 for POPC. We obtain the values for five different average thicknesses: hydrophobic, steric, head-head, phosphate-phosphate and Luzzati. Comparison of the results for these three lipids and for our recent dimyristoylphosphatidylcholine (DMPC) determination provides quantitative measures of the effect of unsaturation on bilayer structure. Our results suggest that lipids with one monounsaturated chain have quantitative bilayer structures closer to lipids with two monounsaturated chains than to lipids with two completely saturated chains.  相似文献   

9.
《FEBS letters》1987,224(2):283-286
The ‘main’ phase transition Lβ→Lα of hydrated 1,2-dipalmitoylphosphatidylethanolamine (DPPE) bilayers in excess water affects the ESR order parameter S33 of N-cetyl-N,N-dimethyl-N-tempoylammonium bromide (CAT-16), 5-doxylstearic acid (5-DSA) and 16-doxylstearic acid (16-DSA) spin probes. The ‘pretransition’ and ‘subtransition’ suggested to occur in hydrated DPPE by Chowdhry et al. [(1984) Biophys. J. 45, 901–904] and Silvius et al. [(1986) Biochemistry 25, 4249–4258], respectively, affect exclusively the S33 of CAT-16, but not that of 5-DSA and 16-DSA spin probes. The subtransition occurs about 15 ± 1°C below the main transition.  相似文献   

10.
Currently phosphodiestrase5 (PDE5) inhibitors are the first-line treatment for erectile dysfunction. Drugs such as sildenafil and tadalafil are available as PDE5 inhibitors which are potent and reversible but lack selectivity with side effects such as headache, facial flushing, dyspepsia, and visual disturbances. We herein report for the first time novel condensed thienopyrimidines as evodiamine analogue and their effect on sexual behavior in male rats hitherto unreported. Novel synthetic evodiamine significantly showed improvement in male rat copulatory behavior. The test compound MKAC9 could be of promising importance in the treatment of sexual disorders like desire disorder or erectile dysfunction.
Figure
Evodiamine analogue on sexual behavior in male rats  相似文献   

11.
In this communication we report the first systematic investigation of the thermodynamic properties of fully hydrated mixed-chain phosphatidylglycerols (PG) using high-resolution differential scanning calorimetry (DSC). The crystal structure of dimyristoylphosphatidylglycerol shows an acyl chain conformation that is nearly opposite to that of phosphatidylcholine (PC). In PC, the sn-1 chain is straight while the sn-2 chain contains a bend; for PG, the sn-1 contains a bend while the sn-2 chain is in the all-trans conformation (R.H. Pearson, I. Pascher, The molecular structure of lecithin dihydrate, Nature, 281 (1978) 499-501; I. Pascher, S. Sundell, K. Harlos, H. Eibl, Conformational and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol, Biochim. Biophys. Acta, 896 (1987) 77-88). If the structure of PG found in the single crystal can be extrapolated to that in the fully hydrated gel-state bilayer, the observed difference in acyl chain conformations implies that modulation of the acyl chain asymmetry will have an opposite effect on the thermotropic phase behavior of PG and PC. For example, it is expected, based on the crystal structures, that C(15):C(13)PG should have a higher main phase transition temperature (Tm) than C(14):C(14)PG, and C(13):C(15)PG should have a lower Tm than C(14):C(14)PG. However, our DSC studies show clearly that the expectation is not borne out by experimental data. Rather, the Tm values of C(15):C(13)PG, C(14):C(14)PG, and C(13):C(15)PG are 18.2 degrees C, 23.1 degrees C, and 24.4 degrees C, respectively. Several other PGs, each with a unique acyl chain composition, have also been studied in this laboratory using high-resolution DSC. It is shown that the acyl chain conformation of fully hydrated PG in general is nearly opposite to that seen in the PG crystal structure.  相似文献   

12.
Several new features of the phase diagram of L-dipalmitoylphosphatidylcholine (DPPC)/palmitic acid mixtures in excess water were established by means of static and time-resolved X-ray diffraction, densitometry and differential scanning calorimetry (DSC). At low temperatures, palmitic acid has a biphasic effect on the lamellar subgel phases: at concentrations below 5-6 mol%, it prevents formation of the DPPC subgel phase (Lc), while at higher contents (between about 40 and 90 mol%) another subgel phase (Lccom) is formed as a result of lipid co-crystallization at 1 DPPC: 2 palmitic acid stoichiometry. A crystalline palmitic acid phase separates from Lccom above 70-80 mol% of fatty acid. The Lccomphase transforms into a lamellar gel phase (L beta) in an endothermic transition centered at 38 degrees C. At high temperatures, the mixtures form hexagonal liquid-crystalline phase (HII) in the region of 60-70 mol% and an isotropic phase (I) at 90-100 mol% of palmitic acid. No coexistence of HII phase with the fluid lamellar phase of DPPC was observed at intermediate compositions (20 and 50 mol% of palmitic acid) but rather formation of a complex phase with non-periodic geometry characterized by molten chains and a broad, continuous small-angle scattering band. No evidence for fluid phase coexistence was found also at compositions between HII and I phases. The L beta--HII transition at 60-70 mol% of palmitic acids is readily reversible and two-state in both heating and cooling modes. It is characterized by the coexistence of initial and final phases with no detectable intermediates by time-resolved and static X-ray diffraction. The crystalline-isotropic transition in palmitic acid is two-state only in heating direction. On cooling, it is characterized by strong undercooling and gradually relaxing lamellar crystalline structures. The slowly reversible Lccom--L beta transition proceeds continuously through intermediate states. Although clearly discernible by both DSC and X-ray diffraction, it is not accompanied by specific volume changes.  相似文献   

13.
The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly.  相似文献   

14.
We prepared highly crystalline samples of a cellulose I-ethylenediamine (EDA) complex by immersing oriented films of algal (Cladophora) cellulose microcrystals in EDA at room temperature for a few days. The unit-cell parameters were determined to be a = 0.455, b = 1.133, and c = 1.037 nm (fiber repeat) and gamma = 94.02 degrees. The space group was P2(1). On the basis of unit cell, density, and thermogravimetry analyses, the asymmetric unit is composed of one anhydrous glucose residue and one EDA molecule. The chemical and thermal stabilities of the cellulose I-EDA complex were also investigated by the use of X-ray diffraction. When the cellulose I-EDA complex was immersed in methanol or water at room temperature, cellulose III I or I beta was obtained, respectively. However, immersion in a nonpolar solvent such as toluene did not affect the crystal structure of the complex. The cellulose I-EDA complex was stable up to a temperature of approximately 130 degrees C, whereas the boiling point of EDA is 117 degrees C. This thermal stability of the complex is probably caused by intermolecular hydrogen bonds between EDA molecules and cellulose. When heated above 150 degrees C, the cellulose I-EDA complex decomposed into cellulose I beta.  相似文献   

15.
Daily intratumor administration of 16,16-dimethyl-PGE2-methyl ester in two different dosages inhibited tumor growth in C57Bl/6J mice bearing subcutaneous B-16 melanomas. The larger dose (20 microgram/day/mouse) produced a 68% decrease in tumor volume, a 69% decrease in tumor weight and a 60% decrease in the number of cells in mitotic phase. The smaller dose (10microgram/day/mouse) was one fifth less effective than the 20microgram dose but produced similar changes. Histological examination of tumors revealed no significant differences either in the inflammatory cell population or the amount of necrosis in the control and di-M-PGE2-treated tumors.  相似文献   

16.
The hydrolysis of d-erythro beef brain sphingomyelin and d,l-erythro-N-palmitoylsphingomyelin dispersed as multilamellar liposomes by sphingomyelinase of Staphylococcus aureus is correlated with the thermotropic behavior of the sphingomyelins. In both cases maximal enzymatic hydrolysis was achieved at the beginning of the gel to liquid crystalline phase transition (30°C for beef brain sphingomyelin and 41°C for N-palmitoylsphingosinephosphorylcholine) with much lower activity both below and above these temperatures. The enzymatic activity was depressed in the presence of cholesterol in the bilayer which also depressed the phase transition. The profile of the enzymatic activity is explained by the uniqueness of the lipid molecules arrangement at the phase transition.  相似文献   

17.
Phase behavior and structure of aqueous dispersions of sphingomyelin   总被引:6,自引:0,他引:6  
The phase behavior of bovine brain sphingomyelin in water has been determined by polarizing light microscopy, differential scanning calorimetry, and X-ray diffraction. Lamellar phases, in which water is intercalated between sheets of lipid molecules arranged in the classical bilayer fashion, are present over much of the phase diagram. An order-disorder transition separates the high temperature, liquid crystalline, lamellar phase from a more ordered lamellar phase at low temperatures. The hydration characteristics of sphingomyelin are similar to the structurally related lecithin in that only limited amounts of water are incorporated above and below the transition. Above the transition at 47 degrees C, a maximum of 35% by weight of water can be incorporated between the lipid bilayers, the total thickness at maximum hydration being 60.2 A, the lipid thickness 38 A, and the surface area per lipid molecule at the interface 60 A(2). Water in excess of 35% by weight is present as a separate phase. Below the phase transition, at 25 degrees C a maximum of 42% by weight of water may be incorporated between the lipid bilayers. On increasing the hydration, the lamellar repeat distance increases from 63.5 A to a limiting value of 76 A. Within this hydration range the calculated lipid thickness decreases from 63.5 to 42.5 A, and the surface area per lipid molecule increases from 36.1 to 53.6 A(2). Although these changes may be accounted for by a structure in which the hexagonally packed ordered hydrocarbon chains tilt progressively with respect to the normal to the bilayer plane on increasing hydration, it is possible that changes in other more complex lamellar structures may be responsible for these variations in lipid thickness and surface area.  相似文献   

18.
In rat germ cells and spermatozoa, sphingomyelin (SM) contains molecular species with nonhydroxy (n) and 2-hydroxy (h) very-long-chain polyunsaturated fatty acids (V), the most abundant being SMs with (n- and h-) 28:4n-6, 30:5n-6, and 32:5n-6 as acyl chains. The aim of this study was to gain information about their thermotropic behavior and interactions with other lipids. After isolation from rat testis, multilamellar and giant unilamellar vesicles from these SMs were examined using fluorescent probes. Only n-32:5 SM and h-32:5 SM displayed a gel-liquid transition temperature (Tt ∼ 21–22°C), the rest remaining in the liquid state in the 5°C–45°C range. The degree of order was larger in bilayers of any of the h-V SMs than in those of their chain-matched n-V SMs. Both, but n-V SM relatively more than h-V SM, decreased the Tt of dimyristoylphosphatidylcholine as their proportion increased in binary phosphatidylcholine:SM liposomes. In contrast to the established ability of 16:0 SM to form lateral cholesterol/SM-rich ordered domains in ternary dioleoylphosphatidylcholine:cholesterol:SM bilayers, neither n-V SM nor h-V SM showed a tendency to do so. Thus, these SMs are in the fluid state and are not involved in this type of domains in spermatozoa at physiological temperatures. However, this state could be altered at the very low temperatures at which these gametes are usually preserved.  相似文献   

19.
The hydrolysis of D-erythro beef brain sphingomyelin and D,L-erythro-N-palmitoylsphingomyelin dispersed as multilamellar liposomes by sphingomyelinase of Staphylococcus aureus is correlated with the thermotropic behavior of the sphingomyelins. In both cases maximal enzymatic hydrolysis was achieved at the beginning of the gel to liquid crystalline phase transition (30 degrees C for beef brain sphingomyelin and 41 degrees C for N-palmitoylsphingosine-phosphorylcholine) with much lower activity both below and above these temperatures. The enzymatic activity was depressed in the presence of cholesterol in the bilayer which also depressed the phase-transition. The profile of the enzymatic activity is explained by the uniqueness of the lipid molecules arrangement at the phase transition.  相似文献   

20.
A sphingomyelin analogue 2, in which the long alkenyl chain and the phosphodiester moiety of sphingomyelin were replaced by a phenyl and an isosteric difluoromethylenephosphonic acid, was prepared to evaluate its inhibitory potency to sphingomyelinase. The analogue non-competitively inhibited the neutral sphingomyelinase in bovine brain microsomes with an IC50 of 400 microM. The compound had the ability to suppress tumor necrosis factor alpha-induced apoptosis of PC-12 neurons at a low concentration of 0.1 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号