首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weakly electric fish orient at night in complete darkness by employing their active electrolocation system. They emit short electric signals and perceive the consequences of these emissions with epidermal electroreceptors. Objects are detected by analyzing the electric images which they project onto the animal's electroreceptive skin surface. This process corresponds to similar processes during vision, where visual images are cast onto the retinas of eyes. Behavioral experiments have shown that electric fish can measure the distance of objects during active electrolocation, thus possessing three-dimensional depth perception of their surroundings. The fundamental mechanism for distance determination differs from stereopsis used during vision by two-eyed animals, but resembles some supplementary mechanisms for distance deduction in humans. Weakly electric fish can also perceive the three-dimensional shape of objects. The fish can learn to identify certain objects and discriminate them from all other objects. In addition, they spontaneously categorize objects according to their shapes and not according to object size or material properties. There is good evidence that some fundamental types of perceptional invariances during visual object recognition in humans are also found in electric fish during active electrolocation. These include size invariance (maybe including size constancy), rotational invariance, and translational invariance. The mechanisms of shape detection during electrolocation are still unknown, and their discoveries require additional experiments.  相似文献   

2.
In extremely rapid maneuvers, animals including man can launch ballistic motor patterns that cannot immediately be corrected. Such patterns are difficult to direct at targets that move in three-dimensional space, and it is presently unknown how animals learn to acquire the precision required. Archer fish live in groups and are renowned for their ballistic hunting technique in which they knock down stationary aerial insect prey with a precisely aimed shot of water. Here we report that these fish can learn to release their shots so as to hit prey that moves rapidly at great height, a remarkable accomplishment in which the shooter must take both the target's three-dimensional motion as well as that of its rising shot into account. To successfully perform in the three-dimensional task, training with horizontal motion suffices. Moreover, all archer fish of a group were able to learn the complex sensomotor skill from watching a performing group member, without having to practice. This instance of social learning in a fish is most remarkable as it could imply that observers can "change their viewpoint," mapping the perceived shooting characteristics of a distant team member into angles and target distances that they later must use to hit.  相似文献   

3.
Weakly electric fish use active electrolocation for orientation at night. They emit electric signals (electric organ discharges) which generate an electrical field around their body. By sensing field distortions, fish can detect objects and analyze their properties. It is unclear, however, how accurately they can determine the distance of unknown objects. Four Gnathonemus petersii were trained in two-alternative forced-choice procedures to discriminate between two objects differing in their distances to a gate. The fish learned to pass through the gate behind which the corresponding object was farther away. Distance discrimination thresholds for different types of objects were determined. Locomotor and electromotor activity during distance measurement were monitored. Our results revealed that all individuals quickly learned to measure object distance irrespective of size, shape or electrical conductivity of the object material. However, the distances of hollow, water-filled cubes and spheres were consistently misjudged in comparison with solid or more angular objects, being perceived as farther away than they really were. As training continued, fish learned to compensate for these 'electrosensory illusions' and erroneous choices disappeared with time. Distance discrimination thresholds depended on object size and overall object distance. During distance measurement, the fish produced a fast regular rhythm of EOD discharges. A mechanisms for distance determination during active electrolocation is proposed.  相似文献   

4.
Weakly electric fish use active electrolocation for orientation at night. They emit electric signals (electric organ discharges) which generate an electrical field around their body. By sensing field distortions, fish can detect objects and analyze their properties. It is unclear, however, how accurately they can determine the distance of unknown objects. Four Gnathonemus petersii were trained in two-alternative forced-choice procedures to discriminate between two objects differing in their distances to a gate. The fish learned to pass through the gate behind which the corresponding object was farther away. Distance discrimination thresholds for different types of objects were determined. Locomotor and electromotor activity during distance measurement were monitored. Our results revealed that all individuals quickly learned to measure object distance irrespective of size, shape or electrical conductivity of the object material. However, the distances of hollow, water-filled cubes and spheres were consistently misjudged in comparison with solid or more angular objects, being perceived as farther away than they really were. As training continued, fish learned to compensate for these 'electrosensory illusions' and erroneous choices disappeared with time. Distance discrimination thresholds depended on object size and overall object distance. During distance measurement, the fish produced a fast regular rhythm of EOD discharges. A mechanisms for distance determination during active electrolocation is proposed.  相似文献   

5.
Coral reefs and associated fish populations have experienced rapid decline in the Caribbean region and marine protected areas (MPAs) have been widely implemented to address this decline. The performance of no-take MPAs (i.e., marine reserves) for protecting and rebuilding fish populations is influenced by the movement of animals within and across their boundaries. Very little is known about Caribbean reef fish movements creating a critical knowledge gap that can impede effective MPA design, performance and evaluation. Using miniature implanted acoustic transmitters and a fixed acoustic receiver array, we address three key questions: How far can reef fish move? Does connectivity exist between adjacent MPAs? Does existing MPA size match the spatial scale of reef fish movements? We show that many reef fishes are capable of traveling far greater distances and in shorter duration than was previously known. Across the Puerto Rican Shelf, more than half of our 163 tagged fish (18 species of 10 families) moved distances greater than 1 km with three fish moving more than 10 km in a single day and a quarter spending time outside of MPAs. We provide direct evidence of ecological connectivity across a network of MPAs, including estimated movements of more than 40 km connecting a nearshore MPA with a shelf-edge spawning aggregation. Most tagged fish showed high fidelity to MPAs, but also spent time outside MPAs, potentially contributing to spillover. Three-quarters of our fish were capable of traveling distances that would take them beyond the protection offered by at least 40–64% of the existing eastern Caribbean MPAs. We recommend that key species movement patterns be used to inform and evaluate MPA functionality and design, particularly size and shape. A re-scaling of our perception of Caribbean reef fish mobility and habitat use is imperative, with important implications for ecology and management effectiveness.  相似文献   

6.
Motion and vision: why animals move their eyes   总被引:5,自引:0,他引:5  
Nearly all animals with good vision have a repertoire of eye movements. The majority show a pattern of stable fixations with fast saccades that shift the direction of gaze. These movements may be made by the eyes themselves, or the head, or in some insects the whole body. The main reason for keeping gaze still during fixations is the need to avoid the blur that results from the long response time of the photoreceptors. Blur begins to degrade the image at a retinal velocity of about 1 receptor acceptance angle per response time. Some insects (e.g. hoverflies) stabilise their gaze much more rigidly than this rule implies, and it is suggested that the need to see the motion of small objects against a background imposes even more stringent conditions on image motion. A third reason for preventing rotational image motion is to prevent contamination of the translational flow-field, by which a moving animal can judge its heading and the distances of objects. Some animals do let their eyes rotate smoothly, and these include some heteropod molluscs, mantis shrimps and jumping spiders, all of which have narrow linear retinae which scan across the surroundings. Hymenopteran insects also rotate during orientation flights at speeds of 100–200° s−1. This is just consistent with a blur-free image, as are the scanning speeds of the animals with linear retinae. Accepted: 29 April 1999  相似文献   

7.
Although much is now known about the mechanisms that insects, birds and mammals use to orient within familiar areas, our knowledge of such mechanisms in fish is scant. I used the transformational approach to test whether the blind Mexican cave fish can encode shape and size in an internal representation of space. These fish are excellent study animals, as they swim at high velocities (presumably to enhance lateral line organ stimulation) when faced with unfamiliar landmarks or environments. As they are blind, potentially confounding cues from visual global landmarks are unavailable. The fish learnt a square configuration of four landmarks and so must have been be able to encode spatial relationships between the elements within this configuration. After learning landmark arrays, the cave fish showed significant dishabituation (swimming velocity was increased) when exposed to landmark transformations. The fish must therefore have been comparing the environment that they perceived with an internal representation of the environment that they had learnt. The results show that blind Mexican cave fish can encode size (absolute distance between landmarks) and possibly also shape within their spatial maps.  相似文献   

8.
Weakly electric fish generate an electric field around their body by electric organ discharge (EOD). By measuring the modulation of the electric field produced by an object in the field these fish are able to accurately locate an object. Theoretical and experimental studies have focused on the amplitude modulations of EODs produced by resistive objects. However, little is known about the phase modulations produced by objects with complex impedance. The fish must be able to detect changes in object impedance to discriminate between food and nonfood objects. To investigate the features of electric images produced by objects with complex impedance, we developed a model that can be used to map the electric field around the fish body. The present model allows us to calculate the spatial distribution of the amplitude and phase shift in an electric image. This is the first study to investigate the changes in amplitude and phase shift of electric images induced by objects with complex impedance in wave-type fish. Using the model, we show that the amplitude of the electric image exhibits a sigmoidal change as the capacitance and resistance of an object are increased. Similarly, the phase shift exhibits a significant change within the object capacitance range of 0.1–100 nF. We also show that the spatial distribution of the amplitude and phase shifts of the electric image resembles a “Mexican hat” in shape for varying object distances and sizes. The spatial distribution of the phase shift and the amplitude was dependent on the object distance and size. Changes in the skin capacitance were associated with a tradeoff relationship between the magnitude of the amplitude and phase shift of the electric image. The specific range of skin capacitance (1–100 nF) allows the receptor afferents to extract object features that are relevant to electrolocation. These results provide a useful basis for the study of the neural mechanisms by which weakly electric fish recognize object features such as distance, size, and impedance.  相似文献   

9.
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.  相似文献   

10.
When juvenile and adult animals occur syntopically, juveniles are at a distinct performance disadvantage due to their absolutely small size. Yet, optimal foraging theory predicts that juvenile predators should feed efficiently in order to compete with adults for food, and to minimize their exposure to predators. Previous authors have suggested that one way for juvenile animals to accomplish these ecological tasks is by increasing their overall feeding performance relative to adults (compensation hypothesis). Nonetheless, only a handful of studies have tested whether juvenile animals have increased feeding performance (e.g. decreased ingestion and/or handling times relative to body size) compared with adults. We tested this hypothesis by examining the ontogeny of head dimensions and feeding performance (ingestion time and number of mandibular protractions) on fish prey for broad-banded water snakes Nerodia fasciata . Individuals were fed fish scaled in a 1:1 ratio to their head width. All head dimensions scaled with significant negative allometry versus body size, and thus smaller snakes had relatively larger heads for their body size compared with larger snakes. By contrast, most head variables (except head volume) exhibited positive allometry versus head length, demonstrating that larger snakes had larger head dimensions relative to head size compared with smaller snakes. In the performance trials, smaller snakes had worse feeding performances when feeding on similarly sized fish prey (relative to their head width) compared with larger snakes. Therefore, these data show that smaller water snakes do not compensate for their size through increased feeding performance.  相似文献   

11.
In a food‐rewarded two‐alternative forced‐choice procedure, it was determined how well the weakly electric elephantnose fish Gnathonemus petersii can sense gaps between two objects, some of which were placed in front of complex backgrounds. The results show that at close distances, G. petersii is able to detect gaps between two small metal cubes (2 cm × 2 cm × 2 cm) down to a width of c. 1·5 mm. When larger objects (3 cm × 3 cm × 3 cm) were used, gaps with a width of 2–3 mm could still be detected. Discrimination performance was better (c. 1 mm gap size) when the objects were placed in front of a moving background consisting of plastic stripes or plant leaves, indicating that movement in the environment plays an important role for object identification. In addition, the smallest gap size that could be detected at increasing distances was determined. A linear relationship between object distance and gap size existed. Minimal detectable gap sizes increased from c. 1·5 mm at a distance of 1 cm, to 20 mm at a distance of 7 cm. Measurements and simulations of the electric stimuli occurring during gap detection revealed that the electric images of two close objects influence each other and superimpose. A large gap of 20 mm between two objects induced two clearly separated peaks in the electric image, while a 2 mm gap caused just a slight indentation in the image. Therefore, the fusion of electric images limits spatial resolution during active electrolocation. Relative movements either between the fish and the objects or between object and background might improve spatial resolution by accentuating the fine details of the electric images.  相似文献   

12.
Yovel Y  Au WW 《PloS one》2010,5(11):e14054
Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders). In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.  相似文献   

13.
In recent years, it has been shown that animals can localize the geometric center of an area by reference to the shape of the environment. We trained a group of mice (experimental group) to search for a pellet hidden under sand in the center of a square-shaped dry maze. Three weeks later, they were tested in a triangular enclosure half the size of the training area and a circular enclosure double the size of the training area to see transfer to these enclosures. We compared their searching behavior with that of subjects that had received no training. The results show that the experimental group searched the geometric center of each enclosure in both transfer tests, while the untrained control group walked along the walls. This indicates that the experimental group localized the center not by reference to the absolute distance from the corners but by equal distances from all walls (geometric center).  相似文献   

14.
Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is challenging because the information from a single image confounds object size and distance. Though our brains frequently judge distances accurately, the underlying computations employed by the brain are not well understood. Our work illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct hypotheses about distance and size perception. We compare these models' predictions to a set of human distance judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3) humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual "posterior sampling". In addition, we compared our model's estimated sensory and motor noise parameters with previously reported measurements in the perceptual literature and found good correspondence between them. Taken together, these results represent a major step forward in establishing the computational underpinnings of human distance perception and the role of size information.  相似文献   

15.
ABSTRACT Accurately estimating large mammal populations is a difficult challenge because species of interest often occupy vast areas and exhibit low and heterogeneous visibility. Population estimation techniques using aerial surveys and statistical design and analysis methods provide a means for meeting this challenge, yet they have only rarely been validated because wild populations of known size suitable for field tests are rare. Our study presents field validations of a photographic aerial mark-recapture technique that takes advantage of the recognizable natural markings on free-roaming feral horses (Equus caballus) to accurately identify individual animals and groups of animals sighted on multiple occasions. The 3 small populations of feral horses (<400 animals each) in the western United States used in the study were all closely monitored on a weekly basis by local researchers, thus providing test populations of known size. We were able to accurately estimate these population sizes with aerial surveys, despite rugged terrain and dense vegetation that created substantial heterogeneity of sighting probability among horse groups. Our best estimates at the 3 sites were within −6.7%, 2.6%, and −8.6% of known truth (-4.2% mean error, 6.0% mean absolute error). In contrast, we found undercount bias as large as 32% before any statistical corrections. The necessary corrections varied both temporally and spatially, in response to previous sighting history (behavioral response), and by the number of horses in a group. Despite modeling some of the differences in horse-group visibility with sighting covariates, we found substantial residual unmodeled heterogeneity that contributed to underestimation of the true population by as much as 22.7% when we used models that did not fully account for these unmeasured sources. We also found that the cost of the accurate and validated methods presented here is comparable to that of raw count (so called, census) methods commonly employed across feral horse ranges in 10 western states. We believe this technique can assist managers in accurately estimating many feral horse populations and could be applied to other species with sufficiently diverse and distinguishable visible markings.  相似文献   

16.
Using otolith weight to age fish   总被引:4,自引:0,他引:4  
The problem of determining and verifying ages of fish, from populations having a considerable variation in size at age, has been investigated using the relationship between otolith size and fish size, which has been shown by several authors to be influenced by growth rate. In such a population of Sardinella aurita Val. an index of age can be obtained for individual fish by calculating the equivalent otolith weight at a particular fish length, using the otolith weight–fish length relationship determined for each age group. This statistic not only permits a much greater proportion of fish to be assigned ages than is possible with otolith reading alone, but also enables the age groups to be verified as year classes. However, it is concluded that, although appropriate models based on otolith-fish size relationships can predict age for groups of fish in which growth rates are known or can be assumed to be consistent, such techniques have a limited application in ageing fish from wild populations with highly variable growth rates.  相似文献   

17.
GRAHAM R. MARTIN 《Ibis》1986,128(2):266-277
Behavioural studies show that in the eye of the Tawny Owl Strix aluco both absolute visual sensitivity and maximum spatial resolution at low light levels are close to the theoretical limit dictated principally by the quantal nature of light and the physiological limitations on the structure of vertebrate eyes. However, when the owl's visual sensitivity in relation to naturally occurring ligh levels is analysed, it is concluded that at night there will often be occasions when vision can only be used to control the owl's behaviour with respect to large objects.
Owls are capable of detecting and catching prey by hearing alone. However, absolute auditory sensitivity is not superior to that of mammals (including Man), but does appear to have reached the absolute limit on sensitivity in the aerial environment, which is dictated by the minimum ambient sound level.
An explanation of the owl's ability to be active at night based only upon high sensory sensitivity is thus untenable. Many features of the natural behaviour of the Tawny Owl (e.g., the high degree of territoriality, prey catching technique, dietary spectrum) may be interpreted as reflections of an additional requirement for the nocturnal habit beyond high sensory sensitivity: detailed knowledge of local topography.  相似文献   

18.
Seminal field studies led by C. G. Johnson in the 1940s and 1950s showed that aphid aerial density diminishes with height above the ground such that the linear regression coefficient, b, of log density on log height provides a single-parameter characterization of the vertical density profile. This coefficient decreases with increasing atmospheric stability, ranging from -0.27 for a fully convective boundary layer to -2.01 for a stable boundary layer. We combined a well-established Lagrangian stochastic model of atmospheric dispersal with simple models of aphid behaviour in order to account for the range of aerial density profiles. We show that these density distributions are consistent with the aphids producing just enough lift to become neutrally buoyant when they are in updraughts and ceasing to produce lift when they are in downdraughts. This active flight behaviour in a weak flier is thus distinctly different from the aerial dispersal of seeds and wingless arthropods, which is passive once these organisms have launched into the air. The novel findings from the model indicate that the epithet 'passive' often applied to the windborne migration of small winged insects is misleading and should be abandoned. The implications for the distances traversed by migrating aphids under various boundary-layer conditions are outlined.  相似文献   

19.
Varying the number of fish in schools of minnows (Phoxinus phoxinus) affects their three-dimensional structure and internal dynamics. Previous authors have suggested that single pairs of fish can be considered a school, but internal organization and structure of two-fish schools are quantitatively different from those for larger schools. Time series analyses show that correlations between fishes' instantaneous velocities increase with school size and as interfish distances decrease. Average cross-correlations of fishes' velocities indicate that leader/follower relationships are common in two-fish schools, but they are not seen for schools with more fish in them. Pairs of fish tend to swim one behind another and on the same level, but larger schools take on a more three-dimensional appearance.  相似文献   

20.
Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号