共查询到20条相似文献,搜索用时 0 毫秒
1.
K W Koch 《Trends in biochemical sciences》1992,17(8):307-311
Vertebrate photoreceptors can adjust their sensitivity to a wide range of light intensities spanning several orders of magnitude, the phenomenon of which is called light adaptation. Electrophysiological and biochemical studies have revealed that calcium can serve as an intracellular transmitter of light adaptation under the control of cGMP metabolism. After illumination, the cytoplasmic calcium concentration of a photoreceptor decreases, which in turn strongly activates photoreceptor guanylate cyclase. This calcium-dependent effect is mediated by a novel calcium-binding protein (recoverin) and leads to the restoration of the depleted cGMP pool after illumination. 相似文献
2.
H R Matthews 《Journal of Physiology》1992,86(1-3):147-155
The process of light adaptation in vertebrate rod and cone photoreceptors is believed to involve a diffusible cytoplasmic messenger. Two lines of evidence indicate that photoreceptor light adaptation is mediated by a light-induced fall in cytoplasmic calcium concentration (Ca2+i). First, if changes in calcium concentration are slowed by the incorporation of calcium chelators into the photoreceptor cytoplasm then light adaptation is slowed also. Second, if the normal control of Ca2+i is prevented by simultaneously minimising calcium influx and efflux across the outer segment membrane by means of external solution changes, then all of the manifestations of light adaptation are abolished. Furthermore, recent results show that changes in Ca2+i imposed in the absence of light are sufficient to cause at least some of the manifestations of light adaptation. Together these results indicate that calcium acts as the messenger of light adaptation in the photoreceptors of both lower and higher vertebrates. 相似文献
3.
4.
5.
Dean R. Cummins Timothy H. Goldsmith 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1986,158(1):35-42
Summary After intense orange adapting exposures that convert 80% of the rhodopsin in the eye to metarhodopsin, rhabdoms become covered with accessory pigment and appear to lose some microvillar order. Only after a delay of hours or even days is the metarhodopsin replaced by rhodopsin (Cronin and Goldsmith 1984). After 24 h of dark adaptation, when there has been little recovery of visual pigment, the photoreceptor cells have normal resting potentials and input resistances, and the reversal potential of the light response is 10–15 mV (inside positive), unchanged from controls. The log V vs log I curve is shifted about 0.6 log units to the right on the energy axis, quantitatively consistent with the decrease in the probability of quantum catch expected from the lowered concentration of rhodopsin in the rhabdoms. Furthermore, at 24 h the photoreceptors exhibit a broader spectral sensitivity than controls, which is also expected from accumulations of metarhodopsin in the rhabdoms. In three other respects, however, the transduction process appears to be light adapted: (i) The voltage responses are more phasic than those of control photoreceptors. (ii) The relatively larger effect (compared to controls) of low extracellular Ca++ (1 mmol/1 EGTA) in potentiating the photoresponses suggests that the photoreceptors may have elevated levels of free cytoplasmic Ca++. (iii) The saturating depolarization is only about 30% as large as the maximal receptor potentials of contralateral, dark controls, and by that measure the log V-log I curve is shifted downward by 0.54 log units. The gain (change in conductance per absorbed photon) therefore appears to have been diminished. 相似文献
6.
Microorganisms in the environment can often adapt to use xenobiotic chemicals as novel growth and energy substrates. Specialized enzyme systems and metabolic pathways for the degradation of man-made compounds such as chlorobiphenyls and chlorobenzenes have been found in microorganisms isolated from geographically separated areas of the world. The genetic characterization of an increasing number of aerobic pathways for degradation of (substituted) aromatic compounds in different bacteria has made it possible to compare the similarities in genetic organization and in sequence which exist between genes and proteins of these specialized catabolic routes and more common pathways. These data suggest that discrete modules containing clusters of genes have been combined in different ways in the various catabolic pathways. Sequence information further suggests divergence of catabolic genes coding for specialized enzymes in the degradation of xenobiotic chemicals. An important question will be to find whether these specialized enzymes evolved from more common isozymes only after the introduction of xenobiotic chemicals into the environment. Evidence is presented that a range of genetic mechanisms, such as gene transfer, mutational drift, and genetic recombination and transposition, can accelerate the evolution of catabolic pathways in bacteria. However, there is virtually no information concerning the rates at which these mechanisms are operating in bacteria living in nature and the response of such rates to the presence of potential (xenobiotic) substrates. Quantitative data on the genetic processes in the natural environment and on the effect of environmental parameters on the rate of evolution are needed. 相似文献
7.
Ching-Kang Chen Michael L. Woodruff Gordon L. Fain 《The Journal of general physiology》2015,145(3):213-224
Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3′,5′-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics in a process known as light adaptation, mediated at least in part by a decrease in outer segment Ca2+. Recent evidence indicates that one of the mechanisms of adaptation in mammalian rods is down-regulation of PDE. To investigate the effect of light and a possible role of rhodopsin kinase (G protein–coupled receptor kinase 1 [GRK1]) and the GRK1-regulating protein recoverin on PDE modulation, we used transgenic mice with decreased expression of GTPase-accelerating proteins (GAPs) and, consequently, a less rapid decay of the light response. This slowed decay made the effects of genetic manipulation of GRK1 and recoverin easier to observe and interpret. We monitored the decay of the light response and of light-activated PDE by measuring the exponential response decay time (τREC) and the limiting time constant (τD), the latter of which directly reflects light-activated PDE decay under the conditions of our experiments. We found that, in GAP-underexpressing rods, steady background light decreased both τREC and τD, and the decrease in τD was nearly linear with the decrease in amplitude of the outer segment current. Background light had little effect on τREC or τD if the gene for recoverin was deleted. Moreover, in GAP-underexpressing rods, increased GRK1 expression or deletion of recoverin produced large and highly significant accelerations of τREC and τD. The simplest explanation of our results is that Ca2+-dependent regulation of GRK1 by recoverin modulates the decay of light-activated PDE, and that this modulation is responsible for acceleration of response decay and the increase in temporal resolution of rods in background light. 相似文献
8.
Craig W. Hawryshyn William N. McFarland 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1987,160(4):459-465
Summary Although numerous studies have demonstrated the detection of polarized light in vertebrates, little is known of the photoreceptor mechanisms involved. Recent evidence, however, indicates that cyprinid fishes possess both ultraviolet (UV) and polarization sensitivity suggesting that some vertebrates, like many invertebrates, may employ UV-sensitive cone receptors in polarization sensitivity. In this report, we describe experiments that determine which spectral types of receptors participate in the detection of polarized light. We used a heart-rate conditioning technique to measure increment thresholds of immobilized goldfish for plane-polarized, narrow-band (10 nm half max.) spectral stimuli (380 nm, 460 nm, 540 nm, 660 nm). A typical experiment involved isolating the activity of a cone photoreceptor mechanism by chromatic adaptation and measuring increment thresholds for spectral stimuli at e-vector orientations of the polarizer between 0° to 180° in 30° steps. The UV-, green- and red-sensitive cone receptor mechanisms showed clear evidence of polarization sensitivity while the blue-sensitive cone receptor mechanism was polarizationally insensitive. The average amplitude (base to peak height on Fig. 4) of the polarization sensitivity curves (UV-, green- and red-curves) was 0.67 log unit (standard deviation of 0.12 log unit), with the UV-sensitive cone receptor mechanism most sensitive to the vertical e-vector axis and the green- and red-sensitive cone receptor mechanisms most sensitive to the horizontal e-vector axis. The observation that different cone photoreceptor mechanisms have orthogonal polarization sensitivity in fish suggests that the perception of polarized light may enhance the capacity for visual discrimination in lower vertebrates. 相似文献
9.
10.
For many years, we and our collaborators have investigated the adaptive role of heat shock proteins in different animals,
including the representatives of homothermic and poikilothermic species that inhabit regions with contrasting thermal conditions.
Adaptive evolution of the response to hyperthermia has led to different results depending upon the species. The thermal threshold
of induction of heat shock proteins in desert thermophylic species is, as a rule, higher than in the species from less extreme
climates. In addition, thermoresistant poikilothermic species often exhibit a certain level of heat shock proteins in cells
even at a physiologically normal temperature. Furthermore, there is often a positive correlation between the characteristic
temperature of the ecological niche of a given species and the amount of Hsp70-like proteins in the cells at normal temperature.
Although in most cases adaptation to hyperthermia occurs without changes in the number of heat shock genes, these genes can
be amplified in some xeric species. It was shown that mobile genetic elements may play an important role in the evolution
and fine-tuning of the heat shock response system, and can be used for direct introduction of mutations in the promoter regions
of these genes. 相似文献
11.
12.
Rod outer segments isolated from bovine retinas incorporated 32P into phospholipids after incubation with [gamma-32P]ATP in a Mg2+-containing medium. Only phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate, and phosphatidate were labelled. The incorporation of label into lipids was detected as early as 20 s after the start of incubation and the products were stable for at least 10 min. The reactions were time, protein and ATP-concentration dependent. Entire rod outer segments showed higher diacylglycerol kinase and lower phosphatidylinositol and phosphatidylinositol 4-phosphate kinase activities than the disc membranes obtained from them. Exogenously added phosphatidylinositol (up to 1 mM) in the presence of Triton X-100 increased phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate labelling in rod outer segments (8- and 6-fold, respectively). Triton X-100 at a concentration of 0.4% stimulated phosphorylation of endogenous phosphoinositides. Diacylglycerol kinase activity was largely suppressed by the detergent, but this effect was partially reversed by addition of phosphatidylinositol. It is suggested that the rod outer segments contain phosphatidylinositol kinase and phosphatidylinositol 4-phosphate kinase bound to disc membranes, as well as an active diacylglycerol kinase occurring either as a soluble or a peripherally bound protein in disc membranes. 相似文献
13.
A model is proposed for the mechanism of light and dark adaptation of vertebrate cones, especially for the one of operating curves shifting during light and dark adaptation, on the basis of physiological results. The mechanism is modeled in terms of bleaching levels and background effects through horizontal cell feedback loops. Furthermore, the spectral sensitivity of vertebrate cones is examined with the model. Simulations of the model are made and the results of the simulations extremely coincide with experimental results. 相似文献
14.
These preliminary notes were made on sensitivity changes and facilitation in the photoreceptor of phalangium opilio, due to light adaptation. They show that facilitation is a case opposite to light adaptation. Other measurements are planned in the progress of this work. 相似文献
15.
16.
David G. Wilkinson 《BioEssays : news and reviews in molecular, cellular and developmental biology》1993,15(8):499-505
Recent work has shown that segmentation underlies the patterning of the vertebrate hindbrain and its neural crest derivatives. Several genes have been identified with segment-restricted expression, and evidence is now emerging regarding their function and regulatory relationships. The expression patterns of Hox genes and the phenotype of null mutants indicate roles in specifying segment identity. A zinc finger gene Krox-20 is a segment-specific regulator of Hox expression, and it seems probable that retinoic acid receptors also regulate Hox genes in the hindbrain. The receptor tyrosine kinase gene Sek may mediate cell-cell interactions that lead to segmentation. These studies provide a starting point for understanding the molecular basis of segmental patterning in the hindbrain. 相似文献
17.
Ian A. Johnston N. J. Walesby 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1977,119(2):195-206
Summary Studies have been carried out on the Mg2+ Ca2+-myofibrillar ATPase from the muscles of fish adapted to different environmental temperatures. The thermal stability of the ATPase is strongly correlated with mean habitat temperature. Activities of Antarctic fish ATPases are significantly higher at low temperatures than those of temperate and tropical water species. The effects of ionic strength on ATPase activity have also been studied. The Gibbs free energy of activation (G
#) was found to increase and enzyme activity decrease with increasing ionic strength within the physiological temperature range of each species. Significantly lower values of G
#, of around 1 Kcal/mole, are obtained for the ATPase of cold-adapted compared to tropical fish. Enthalpic and entropic activation energies were also reduced in the cold adapted ATPases. It is postulated that the reduction of the enthalpic activation term in the cold adapted enzyme confers the advantage of reducing the temperature sensitivity of the rate limiting step thus partly compensating for the low heat content of the cellular environment. Possible molecular mechanisms of temperature compensation in fish myofibrillar ATPase are discussed. 相似文献
18.
Effective protection of the heart against ischemia/reperfusion injury is one of the most important goals of experimental and clinical research in cardiology. Besides ischemic preconditioning as a powerful temporal protective phenomenon, adaptation to chronic hypoxia also increases cardiac tolerance to all major deleterious consequences of acute oxygen deprivation such as myocardial infarction, contractile dysfunction and ventricular arrhythmias. Although many factors have been proposed to play a potential role, the detailed mechanism of this long-term protection remains poorly understood. This review summarizes current limited evidence for the involvement of ATP-sensitive potassium channels, reactive oxygen species, nitric oxide and various protein kinases in cardioprotective effects of chronic hypoxia. 相似文献
19.