首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine rice cultivars were evaluated under screenhouse conditions for resistance to Rice yellow mottle virus (RYMV) and possible seed transmission. Completely randomised design with three replications was used. In Experiment 1, the seedlings were inoculated with the virus at two weeks after planting. In Experiment 2, the seeds collected from Experiment 1 were dried for four weeks before planting. For each genotype, the seeds from healthy plants were planted as a control. Disease incidence and severity (scales 1–9), yield and yield components were recorded. Statistical analyses included Area Under the Disease Progress Curve (AUDPC) and independent t test. The cultivars FARO 37, FARO 52 and Gigante were highly resistant, whereas WAB189-B38HB was resistant. Paddy yield was highest (3.6 g) in FARO 37. There were no symptoms of virus disease in all the plants originating from the seeds of RYMV-infected plants. The differences between the seeds from infected and healthy plants for all the measured traits were not significant (p > 0.05). The number of days to seedling emergence was uniform (5.5 days) in all the cultivars. Plant height, number of tillers per plant, number of days to heading and paddy yield from the seeds of virus-infected plants varied from 54.8 to 68.4 cm, 17 to 21, 85.3 to 96 days and 2.7 to 4 g, respectively. Conversely, a range of 54.9–68.7 cm, 17–22, 83–95 days and 2.8–4.1 g was found in the seeds of healthy plants. Selection and cultivation of high-yielding, resistant and healthy seeds would enhance food security.  相似文献   

2.
Rice yellow mottle virus (RYMV) is specific to Africa and has been reported in some countries in East Africa and almost all the countries in West Africa. At present, it is undoubtedly the most important disease of rice in Tanzania. It was first reported in the 1980's. It has spread fast and is now found in almost all the rice growing areas. In view of the increasing incidence and importance of RYMV on rice production in Tanzania, studies on the epidemiology of the disease were initiated in order to find ways of controlling the disease. Transmission studies were carried out on seventy‐seven species of beetles and grasshoppers collected from different rice growing locations to determine vector identity. Four vectors have been identified (three chrysomelids; Dactylispa sp., Chaetocnema sp. and Chaetocnema pulla) and one tetrigid grasshopper. The wide distribution of Chaetocnema spp. in the RYMV endemic areas suggests that the species are the most important vectors responsible for infections in these areas.  相似文献   

3.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.  相似文献   

4.
5.
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin.  相似文献   

6.
Nicotiana benthamiana has been described as non-host for Melon necrotic spot virus (MNSV). We investigated the basis of this resistance using the unique opportunity provided by strain MNSV-264, a recombinant virus that is able to overcome the resistance. Analysis of chimeric MNSV mutants showed that virulence in N. benthamiana is conferred by a 49 nucleotide section of the MNSV-264 3'-UTR, which acts in this host as a cap-independent translational enhancer (3'-CITE). Although the 3'-CITE of non-adapted MNSV-Mα5 is active in susceptible melon, it does not promote efficient translation in N. benthamiana, thus preventing expression of proteins required for virus replication. However, MNSV-Mα5 gains the ability to multiply in N. benthamiana cells if eIF4E from a susceptible melon variety (Cm-eIF4E-S) is supplied in trans. These data show that N. benthamiana resistance to MNSV-Mα5 results from incompatibility between the MNSV-Mα5 3'-CITE and N. benthamiana eIF4E in initiating efficient translation of the viral genome. Therefore, non-host resistance conferred by the inability of a host susceptibility factor to support viral multiplication may be a possible mechanism for this type of resistance to viruses.  相似文献   

7.
The protein–protein interaction between VPg (viral protein genome‐linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad‐spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge‐based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap‐binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap‐binding pockets, and mutated. Yeast two‐hybrid assay and co‐immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E‐knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild‐type were over‐expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over‐expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge‐based approaches for the engineering of broad‐spectrum resistance in Chinese cabbage.  相似文献   

8.
In plants RNA silencing is a host defense mechanism against viral infection, in which double‐strand RNA is processed into 21–24‐nt short interfering RNA (siRNA). Silencing spreads from cell to cell and systemically through a sequence‐specific signal to limit the propagation of the virus. To counteract this defense mechanism, viruses encode suppressors of silencing. The P1 protein encoded by the rice yellow mottle virus (RYMV) displays suppression activity with variable efficiency, according to the isolates that they originated from. Here, we show that P1 proteins from two RYMV isolates displaying contrasting suppression strength reduced local silencing induced by single‐strand and double‐strand RNA in Nicotiana benthamiana leaves. This suppression was associated with a slight and a severe reduction in 21‐ and 24‐nt siRNA accumulation, respectively. Unexpectedly, cell‐to‐cell movement and systemic propagation of silencing were enhanced in P1‐expressing Nicotiana plants. When transgenically expressed in rice, P1 proteins induced specific deregulation of DCL4‐dependent endogenous siRNA pathways, whereas the other endogenous pathways were not affected. As DCL4‐dependent pathways play a key role in rice development, the expression of P1 viral proteins was associated with the same severe developmental defects in spikelets as in dcl4 mutants. Overall, our results demonstrate that a single viral protein displays multiple effects on both endogenous and exogenous silencing, not only in a suppressive but also in an enhancive manner. This suggests that P1 proteins play a key role in maintaining a subtle equilibrium between defense and counter‐defense mechanisms, to insure efficient virus multiplication and the preservation of host integrity.  相似文献   

9.
 The genetic basis of resistance to rice yellow mottle virus (RYMV) was studied in a doubled-haploid (DH) population derived from a cross between the very susceptible indica variety ‘IR64’ and the resistant upland japonica variety Azucena. As a quantitative trait locus (QTL) involved in virus content estimated with an ELISA test has been previously identified on chromosome 12, we performed a wide search for interactions between this QTL and the rest of the genome, and between this QTL and morphological traits segregating in the population. Multiple regression with all identified genetic factors was used to validate the interactions. Significant epistasis accounting for a major part of the total genetic variation was observed. A complementary epistasis between the QTL located on chromosome 12 and a QTL located on chromosome 7 could be the major genetic factor controlling the virus content. Resistance was also affected by a morphology-dependent mechanism since tillering was interfering with the resistance mechanism conditioned by the epistasis between the two QTLs. Marker-assisted backcross breeding was developed to introgress the QTLs of chromosome 7 and chromosome 12 in the susceptible ‘IR64’ genetic background. First results confirmed that if both QTLs do not segregate in a backcross-derived F2 population, then the QTL of chromosome 12 cannot explain differences in virus content. A near-isogenic line (NIL) approach is currently being developed to confirm the proposed genetic model of resistance to RYMV. Received: 20 April 1990 / Accepted: 30 April 1998  相似文献   

10.
 Rice yellow mottle virus (RYMV) resistance QTLs were mapped in a doubled-haploid population of rice, ‘IR64/Azucena’. Disease impact on plant morphology and development, expression of symptoms and virus content were evaluated in field conditions. Virus content was also assessed in a growth chamber. RYMV resistance was found to be under a polygenic determinism, and 15 QTLs were detected on seven chromosomal fragments. For all of the resistance QTLs detected, the favourable allele was provided by the resistant parent ‘Azucena’. Three regions were determined using different resistance parameters and in two environments. On chromosome 12, a QTL of resistance that had already been detected in this population and another indica/japonica population was confirmed both in the field and under controlled conditions. Significant correlations were observed between resistance and tillering ability, as measured on control non-inoculated plants. In addition, the three genomic fragments involved in resistance were also involved in plant architecture and development. In particular, the semi-dwarfing gene sd-1, on chromosome 1, provided by the susceptible parent, ‘IR64’, mapped in a region where resistance QTLs were detected with most of the resistance parameters. In contrast, the QTL of resistance mapped on chromosome 12 was found to be independent of plant morphology. Received: 20 April 1998 / Accepted: 30 April 1998  相似文献   

11.
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis.  相似文献   

12.
From the characterization of the recessive resistance gene, sbm1, in pea we have identified the eukaryotic translation initiation factor, eIF4E, as a susceptibility factor required for infection with the Potyvirus, Pea seed-borne mosaic virus. A functional analysis of the mode of action of the product of the dominant allele revealed a novel function for eIF4E in its support for virus movement from cell-to-cell, in addition to its probable support for viral RNA translation, and hence replication. Different resistance specificities in two independent pea lines were explained by different mutations in eIF4E. On the modelled structure of eIF4E the coding changes were in both cases lying in and around the structural pocket involved in binding the 5'-m7G cap of eukaryotic mRNAs. Protein expression and cap-binding analysis showed that eIF4E encoded by a resistant plant could not bind to m7G-Sepharose, a result which may point to functional redundancy between eIF4E and the paralogous eIF(iso)4E in resistant peas. These observations, together with related findings for other potyvirus recessive resistances, provide a more complete picture of the potyvirus life cycle.  相似文献   

13.
Eukaryotic translation initiation factor 3 is composed of 13 subunits (eIF3a through eIF3m) and plays an essential role in translation. During apoptosis, several caspases rapidly down-regulate protein synthesis by cleaving eIF4G, -4B, -3j, and -2α. In this study, we found that the activation of caspases by cisplatin in T24 cells induces the cleavage of subunit G of the eIF3 complex (eIF3g). The cleavage site (SLRD220G) was identified, and we found that the cleaved N-terminus was translocated to the nucleus, activating caspase-3, and that it also showed a strong DNase activity. These data demonstrate the important roles of eIF3g in the translation initiation machinery and in DNA degradation during apoptosis.  相似文献   

14.
In eukaryotic cells, protein synthesis is a complex and multi-step process that has several mechanisms to start the translation including cap-dependent and cap-independent initiation. The translation control of eukaryotic gene expression occurs principally at the initiation step. In this context, it is critical that the eukaryotic translation initiation factor eIF4E bind to the 7-methylguanosine (m7G) cap present at the 5′-UTRs of most eukaryotic mRNAs. Combined with other initiation factors, eIF4E mediates the mRNA recruitment on ribosomes to start the translation. Moreover, the eIF4E nuclear bodies are involved in the export of specific mRNAs from the nucleus to the cytoplasm. In this review, we focus on the eIF4E structure and its physiological functions, and describe the role of eIF4E in cancer development and progression and the current therapeutic strategies to target eIF4E.  相似文献   

15.
One of the earliest steps in translation initiation is recognition of the mRNA cap structure (m7GpppX) by the initiation factor eIF4E. Studies of interactions between purified eIF4E and its binding partners provide important information for understanding mechanisms underlying translational control in normal and cancer cells. Numerous impediments of the available methods used for eIF4E purification led us to develop a novel methodology for obtaining fractions of eIF4E free from undesired by-products. Herein we report methods for bacterial expression of eIF4E tagged with mutant dihydrofolate reductase (DHFR) followed by isolation and purification of the DHFR–eIF4E protein by using affinity and anion exchange chromatography. Fluorescence quenching experiments indicated the cap-analog, 7MeGTP, bound to DHFR–eIF4E and eIF4E with a dissociation constant (Kd) of 6 ± 5 and 10 ± 3 nM, respectively. Recombinant eIF4E and DHFR–eIF4E were both shown to significantly enhance in vitro translation in dose dependent manner by 75% at 0.5 μM. Nevertheless increased concentrations of eIF4E and DHFR–eIF4E significantly inhibited translation in a dose dependent manner by a maximum at 2 μM of 60% and 90%, respectively. Thus, we have demonstrated that we have developed an expression system for fully functional recombinant eIF4E. We have also shown that the fusion protein DHFR–eIF4E is functional and thus may be useful for cell based affinity tag studies with fluorescently labeled trimethoprim analogs.  相似文献   

16.
Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features.  相似文献   

17.
To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinai mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum ‘Dempsey’ containing an eIF4E mutation (pvr1 2 ) and C. annuum ‘Perennial’ containing an eIFiso4E mutation (pvr6). C. annuum ‘Dempsey’ was susceptible and C. annuum ‘Perennial’ was resistant to ChiVMV. All F1 plants showed resistance, and F2 individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five F2 and 329 F3 plants of 17 families were genotyped with pvr1 2 and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both pvr1 2 and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in eIF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of F2 plants revealed that all plants containing homozygous genotypes of both pvr1 2 and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of eIF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper. These authors contributed equally to this work.  相似文献   

18.
We show here that the pvr2 locus in pepper, conferring recessive resistance against strains of potato virus Y (PVY), corresponds to a eukaryotic initiation factor 4E (eIF4E) gene. RFLP analysis on the PVY-susceptible and resistant pepper cultivars, using an eIF4E cDNA from tobacco as probe, revealed perfect map co-segregation between a polymorphism in the eIF4E gene and the pvr2 alleles, pvr2(1) (resistant to PVY-0) and pvr2(2) (resistant to PVY-0 and 1). The cloned pepper eIF4E cDNA encoded a 228 amino acid polypeptide with 70-86% nucleotide sequence identity with other plant eIF4Es. The sequences of eIF4E protein from two PVY-susceptible cultivars were identical and differed from the eIF4E sequences of the two PVY-resistant cultivars Yolo Y (YY) (pvr2(1)) and FloridaVR2 (F) (pvr2(2)) at two amino acids, a mutation common to both resistant genotypes and a second mutation specific to each. Complementation experiments were used to show that the eIF4E gene corresponds to pvr2. Thus, potato virus X-mediated transient expression of eIF4E from susceptible cultivar Yolo Wonder (YW) in the resistant genotype YY resulted in loss of resistance to subsequent PVY-0 inoculation and transient expression of eIF4E from YY (resistant to PVY-0; susceptible to PVY-1) rendered genotype F susceptible to PVY-1. Several lines of evidence indicate that interaction between the potyvirus genome-linked protein (VPg) and eIF4E are important for virus infectivity, suggesting that the recessive resistance could be due to incompatibility between the VPg and eIF4E in the resistant genotype.  相似文献   

19.
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G1/S boundary) or the Cdk1 inhibitor, RO3306 (G2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.  相似文献   

20.
The emerging roles of translation factor eIF4E in the nucleus   总被引:10,自引:0,他引:10  
The emerging field of nuclear eIF research has yielded many surprises and led to the dissolution of some dogmatic/ideological viewpoints of the place of translation in the regulation of gene expression. Eukaryotic initiation factors (eIFs) are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. For instance, in the cytoplasm, the m7G cap-binding protein eIF4E plays a distinct role in cap-dependent translation initiation. Disruption of eIF4E's regulatory function drastically effects cell growth and may lead to oncogenic transformation. A growing number of studies indicate that many eIFs, including a substantial fraction of eIF4E, are found in the nucleus. Indeed, nuclear eIF4E participates in a variety of important RNA-processing events including the nucleocytoplasmic transport of specific, growth regulatory mRNAs. Although unexpected, it is possible that some eIFs regulate protein synthesis within the nucleus. This review will focus on the novel, nuclear functions of eIF4E and how they contribute to eIF4E's growth-activating and oncogenic properties. Both the cytoplasmic and nuclear functions of eIF4E appear to be dependent on its intrinsic ability to bind to the 5' m7G cap of mRNA. For example, Promyelocytic Leukemia Protein (PML) potentially acts as a negative regulator of nuclear eIF4E function by decreasing eIF4E's affinity for the m7G cap. Therefore, eIF4E protein is flexible enough to utilize a common biochemical activity, such as m7G cap binding, to participate in divergent processes in different cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号