首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p21-activated kinase (PAK) family regulate a multitude of cellular processes, including actin cytoskeleton remodelling. Numerous bacterial pathogens usurp host signalling pathways that regulate actin reorganisation in order to promote Infection. Salmonella and pathogenic Escherichia coli drive actin-dependent forced uptake and intimate attachment respectively. We demonstrate that the pathogen-driven generation of both these distinct actin structures relies on the recruitment and activation of PAK. We show that the PAK kinase domain is dispensable for this actin remodelling, which instead requires the GTPase-binding CRIB and the central poly-proline rich region. PAK interacts with and inhibits the guanine nucleotide exchange factor β-PIX, preventing it from exerting a negative effect on cytoskeleton reorganisation. This kinase-independent function of PAK may be usurped by other pathogens that modify host cytoskeleton signalling and helps us better understand how PAK functions in normal and diseased eukaryotic cells.  相似文献   

2.
The Slit-Robo GTPase activating protein 3 (srGAP3) dynamically regulates cytoskeletal reorganisation through inhibition of the Rho GTPase Rac1 and interaction with actin remodelling proteins. SrGAP3-mediated reorganisation of the actin cytoskeleton is crucial for the normal development of dendritic spines and loss of srGAP3 leads to abnormal synaptic activity and impaired cognitive behaviours in mice, which is reminiscent of an association between disrupted srGAP3 and intellectual disability in humans. Additionally, srGAP3 has been implicated to act downstream of Slit-Robo signalling in commissural axons of the spinal cord. Thus, srGAP3-mediated cytoskeletal reorganisation has an important influence on a variety of neurodevelopmental processes, which may be required for normal cognitive function.  相似文献   

3.
After activation of T cells with either CD3 antibodies or phorbol esters, we have found that T cell-cell aggregation, integrin-dependent actin reorganisation and cell spreading are strongly suppressed by any of three structurally different calmodulin antagonists, without any effect on the amount of CD11/CD18 integrin binding to the actin cytoskeleton. However, only T cell receptor-induced, and not phorbol ester-induced, aggregation and cell spreading are prevented by inhibitors of phosphatidylinositide (PI) 3-kinase. These results suggest that PI 3-kinase lies upstream of calmodulin in the signalling pathway leading to T cell aggregation, cell spreading and actin reorganisation and that cell spreading and actin reorganisation are essential for T cell adhesion.  相似文献   

4.
The present study investigates the effect of reactive oxygen species (ROS) on actin filament reorganisation and its relevance to exocytosis in pancreatic acinar cells. Treatment of pancreatic acini with cholecystokinin (CCK-8) induced spatial and temporal changes in actin filament reorganisation with an initial depolymerisation of the apical actin barrier followed by an increase in the actin filament content in the subapical area leading to amylase release. Hydrogen peroxide (H(2)O(2)) increased actin filament content and potentiated the polymerizing effects of CCK-8 in these cells but abolished the disruption of the apical actin layer and amylase release induced by CCK-8. Similar to CCK-8, ROS generated by the oxidation of hypoxanthine (HX) with xanthine oxidase (XOD) induced an initial decrease in actin filaments located under the apical membrane followed by a smaller increase in the content of actin filaments in the subapical area. XOD-generated ROS are able to increase amylase release in pancreatic acini although combination with CCK-8 leads to abnormal exocytosis. We provide evidence that indicates that CCK-8- and ROS-induced actin reorganisation is entirely dependent on Ca(2+) mobilisation and independent of PKC activation. The regulation of the actin cytoskeleton by ROS might be involved in radical-induced cell injury in pancreatic acinar cells.  相似文献   

5.
Sla2p, also known as End4p and Mop2p, is the founding member of a widely conserved family of actin-binding proteins, a distinguishing feature of which is a C-terminal region homologous to the C terminus of talin. These proteins may function in actin cytoskeleton-mediated plasma membrane remodeling. A human homologue of Sla2p binds to huntingtin, the protein whose mutation results in Huntington's disease. Here we establish by immunolocalization that Sla2p is a component of the yeast cortical actin cytoskeleton. Deletion analysis showed that Sla2p contains two separable regions, which can mediate association with the cortical actin cytoskeleton, and which can provide Sla2p function. One localization signal is actin based, whereas the other signal is independent of filamentous actin. Biochemical analysis showed that Sla2p exists as a dimer in vivo. Two-hybrid analysis revealed two intramolecular interactions mediated by coiled-coil domains. One of these interactions appears to underlie dimer formation. The other appears to contribute to the regulation of Sla2p distribution between the cytoplasm and plasma membrane. The data presented are used to develop a model for Sla2p regulation and interactions.  相似文献   

6.
Clark MG  Amberg DC 《Genetics》2007,176(3):1527-1539
Explication of the Aip1p/cofilin/actin filament complex may lead to a more detailed understanding of the mechanisms by which Aip1p and cofilin collaborate to rapidly disassemble filaments. We further characterized the actin-Aip1p interface through a random mutagenic screen of ACT1, identifying a novel Aip1p interaction site on actin. This finding is consistent with our current ternary complex model and offers insights into how Aip1p may disturb intersubunit contacts within an actin filament. In addition, site-directed mutagenesis aimed at interfering with salt bridge interactions at the predicted Aip1p-cofilin interface revealed hyperactive alleles of cof1 and aip1 that support the ternary complex model and suggest that conformational changes in cofilin structure may be transmitted to actin filaments, causing increased destabilization. Furthermore, these data support an active role for Aip1p in promoting actin filament turnover.  相似文献   

7.
EXPERIMENTAL OBJECTIVES: Stimulation of low-affinity CCK-1 receptors on pancreatic acini leads to inhibition of enzyme secretion. We studied signal transduction mechanisms to identify potential causes for the reduced secretion. RESULTS: Co-stimulation experiments with CCK, CCK-JMV-180, and bombesin revealed an inhibition of bombesin-stimulated enzyme secretion by low-affinity CCK-1 receptors. Binding of 125I-gastrin-releasing peptide (the mammalian analogue of bombesin) to acini after CCK preincubation was not altered. After a short preincubation of acini with high concentrations of CCK, intracellular calcium remained responsive to bombesin. In contrast to bombesin or CCK at concentrations of 10(-10) M or lower, high concentrations of CCK caused a strong activation of p125 focal adhesion kinase (p125(FAK)) and a marked reorganisation of the actin cytoskeleton. CONCLUSIONS: Inhibitory mechanisms triggered by low-affinity CCK-1 receptors interrupt enzyme secretion from pancreatic acini at late stages in the signal transduction cascades since bombesin receptor binding and early signalling events remained intact after CCK preincubation. A reorganisation of the actin cytoskeleton is suggested to be the mechanism by which low-affinity CCK-1 receptors actively interrupt enzyme secretion stimulated by other receptors.  相似文献   

8.
Nuclear inheritance is highly ordered, ensuring stringent, unbiased partitioning of chromosomes before cell division. In plants, however, little is known about the analogous cellular processes that might ensure unbiased inheritance of non-nuclear organelles, either in meristematic cell divisions or those induced during the acquisition of totipotency. We have investigated organelle redistribution and inheritance mechanisms during cell division in cultured tobacco mesophyll protoplasts. Quantitative analysis of organelle repositioning observed by autofluorescence of chloroplasts or green fluorescent protein (GFP), targeted to mitochondria or endoplasmic reticulum (ER), demonstrated that these organelles redistribute in an ordered manner before division. Treating protoplasts with cytoskeleton-disrupting drugs showed that redistribution depended on actin filaments (AFs), but not on microtubules (MTs), and furthermore, that an intact actin cytoskeleton was required to achieve unbiased organelle inheritance. Labelling the actin cytoskeleton with a novel GFP-fusion protein revealed a highly dynamic actin network, with local reorganisation of this network itself, appearing to contribute substantially to repositioning of chloroplasts and mitochondria. Our observations show that each organelle exploits a different strategy of redistribution to ensure unbiased partitioning. We conclude that inheritance of chloroplasts, mitochondria and ER in totipotent plant cells is an ordered process, requiring complex interactions with the actin cytoskeleton.  相似文献   

9.
The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.  相似文献   

10.
Functional design in the actin cytoskeleton   总被引:15,自引:0,他引:15  
Changes in cell shape, anchorage and motility are all associated with the dynamic reorganisation of the architectural arrays of actin filaments that make up the actin cytoskeleton. The relative expression of these functionally different actin filament arrays is intimately linked to the pattern of contacts that a cell develops with its extracellular substrate. Cell polarity is acquired by the development of an asymmetric pattern of substrate contacts, effected in a specific, site-directed manner by the delivery of adhesion-site modulators along microtubules.  相似文献   

11.
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.  相似文献   

12.
Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3ε subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation.  相似文献   

13.
Colorectal cancer is currently the third in cancer incidence worldwide and the fourth most common cause of cancer deaths. Mortality in colorectal cancer is often ascribed to liver metastasis. In an effort to elucidate the proteins involved in colorectal cancer liver metastasis, we compared the proteome profiles of the human colon adenocarcinoma cell line HCT‐116 with its metastatic derivative E1, using the iTRAQ labelling technology, coupled to 2D‐LC and MALDI‐TOF/TOF MS. A total of 547 proteins were identified, of which 31 of them were differentially expressed in the E1 cell line. Among these proteins, the differential expressions of translationally controlled tumour protein 1, A‐kinase anchor protein 12 and Drebrin (DBN1) were validated using Western blot. In particular, DBN1, a protein not previously known to be involved in colorectal cancer metastasis, was found to be overexpressed in E1 as compared to HCT‐116 cells. The overexpression of DBN1 was further validated using immunohistochemistry on colorectal cancer tissue sections with matched lymph node and liver metastasis tissues. DBN1 is currently believed to be involved in actin cytoskeleton reorganisation and suppresses actin filament cross‐linking and bundling. Since actin reorganisation is an important process for tumour cell migration and invasion, DBN1 may have an important role during colorectal cancer metastasis.  相似文献   

14.
Cadherin adhesion receptors are critical components for the maintenance of tissue architecture and organisation during development and in post-embryonic life. These receptors influence the actin cytoskeletal network by controlling its assembly at the junctions. Likewise, the actin cytoskeleton is required for cadherin integrity at cell–cell contacts. The junctional cytoskeleton is intrinsically dynamic and undergoes constant assembly and reorganisation to maintain a morphologically stable structure. This is governed by a host of molecular players that regulate actin assembly during nucleation and at post-nucleation stages. This review highlights the molecular machinery implicated in actin organisation at various stages of junctional assembly and its functional impact in simple epithelia and other model systems.  相似文献   

15.
The Rif and RhoD proteins belong to the Rho subfamily of small GTPases. Rif and RhoD have for too long remained in the shadows of the better known Rho GTPases Cdc42, Rac1 and RhoA. With this review article, our aim is to provide the currently available information regarding Rif and RhoD. Taken together, the data available to date indicate that Rif and RhoD have unique roles in the regulation of actin dynamics, and that RhoD can link actin reorganisation to endosomal vesicle transport.  相似文献   

16.
In a variety of organisms, a number of proteins associated with the cortical actin cytoskeleton contain SH3 domains, suggesting that these domains may provide the physical basis for functional interactions among structural and regulatory proteins in the actin cytoskeleton. We present evidence that SH3 domains mediate at least two independent functions of the Saccharomyces cerevisiae actin-binding protein Abp1p in vivo. Abp1p contains a single SH3 domain that has recently been shown to bind in vitro to the adenylyl cyclase-associated protein Srv2p. Immunofluorescence analysis of Srv2p subcellular localization in strains carrying mutations in either ABP1 or SRV2 reveals that the Abp1p SH3 domain mediates the normal association of Srv2p with the cortical actin cytoskeleton. We also show that a site in Abp1p itself is specifically bound by the SH3 domain of the actin-associated protein Rvs167p. Genetic analysis provides evidence that Abp1p and Rvs167p have functions that are closely interrelated. Abp1 null mutations, like rvs167 mutations, result in defects in sporulation and reduced viability under certain suboptimal growth conditions. In addition, mutations in ABP1 and RVS167 yield similar profiles of genetic "synthetic lethal" interactions when combined with mutations in genes encoding other cytoskeletal components. Mutations which specifically disrupt the SH3 domain-mediated interaction between Abp1p and Srv2p, however, show none of the shared phenotypes of abp1 and rvs167 mutations. We conclude that the Abp1p SH3 domain mediates the association of Srv2p with the cortical actin cytoskeleton, and that Abp1p performs a distinct function that is likely to involve binding by the Rvs167p SH3 domain. Overall, work presented here illustrates how SH3 domains can integrate the activities of multiple actin cytoskeleton proteins in response to varying environmental conditions.  相似文献   

17.
BackgroundThe endothelial glycocalyx, located at the interface of vascular lumen, is a carbohydrate-rich complex that controls vascular functions such as solute permeation and mechanotransduction. It anchors to the cell membrane through core proteins, e.g. syndecan-1, which couple to the actin cytoskeleton. Membrane tension plays an important role in the reorganisation of membrane-bound proteins, however, little is known on the effect of the membrane tension on the various components of the glycocalyx.MethodsHypo-osmotic stress is used to investigate the effect of the membrane tension on syndecan-1 expression.ResultsFollowing 20 min exposure to hypo-osmotic medium, the expression of syndecan-1 in the endothelial glycocalyx layer is reduced to 84.7 ± 3.6% (255 mOsm) and 64.7 ± 2.1% (167 mOsm). This reduction, however, is transient and partial recovery is observed at the end of 2 h exposure to the hypo-osmotic medium. The transient reduction of syndecan-1 is associated with depolymerisation of the actin cytoskeleton. Further examination of the effect of actin manipulation reveals that actin depolymerisation by cytochalasin D results in sustained syndecan-1 reduction. In contrast, stabilising actin using jasplakinolide abolishes the transient reduction of syndecan-1completely.ConclusionsWe demonstrate, for the first time, that membrane tension plays an important role in the regulation of syndecan-1 expression and this effect is mediated by the reorganisation of the actin cytoskeleton.General significanceFindings in this study suggest a new venue of research on the protective role of the glycocalyx in vascular pathophysiology and diseases.  相似文献   

18.
Gic2p is a Cdc42p effector which functions during cytoskeletal organization at bud emergence and in response to pheromones, but it is not understood how Gic2p interacts with the actin cytoskeleton. Here we show that Gic2p displayed multiple genetic interactions with Bni1p, Bud6p (Aip3p), and Spa2p, suggesting that Gic2p may regulate their function in vivo. In support of this idea, Gic2p cofractionated with Bud6p and Spa2p and interacted with Bud6p by coimmunoprecipitation and two-hybrid analysis. Importantly, localization of Bni1p and Bud6p to the incipient bud site was dependent on active Cdc42p and the Gic proteins but did not require an intact actin cytoskeleton. We identified a conserved domain in Gic2p which was necessary for its polarization function but dispensable for binding to Cdc42p-GTP and its localization to the site of polarization. Expression of a mutant Gic2p harboring a single-amino-acid substitution in this domain (Gic2p(W23A)) interfered with polarized growth in a dominant-negative manner and prevented recruitment of Bni1p and Bud6p to the incipient bud site. We propose that at bud emergence, Gic2p functions as an adaptor which may link activated Cdc42p to components involved in actin organization and polarized growth, including Bni1p, Spa2p, and Bud6p.  相似文献   

19.
Cytosolic components of the NADPH oxidase interact with the actin cytoskeleton. These interactions are thought to be important for the activation of this enzyme system but they are poorly characterised at the molecular level. Here we have explored the interaction between the actin cytoskeleton and p40phox, one of the cytosolic components of NADPH oxidase. Full length p40phox expressed in COS cells co-localised with F-actin in a peripheral lamellar compartment. The co-localisation was lost after deletion of the Phox homology (PX) domain and the PX domain in isolation (p40PX) showed the same F-actin co-localisation as the full length protein. PX domains are known lipid-binding modules however, a mutant p40PX which did not bind lipids still co-localised with F-actin suggesting that lipid-independent interactions underlie the localisation. Affinity chromatography identified actin as a binding partner for p40PX in neutrophil extracts. Pure actin interacted with both p40phox and with p40PX suggesting it is a direct interaction. Disruption of the actin cytoskeleton with cytochalasin D resulted in actin rearrangement and concomitantly the localisation of full length p40phox proteins and that of p40PX changed. Thus p40PX is a dual F-actin/lipid-binding module and F-actin interactions with the PX domain dictate at least in part the intracellular localisation of the cytosolic p40phox subunit of the NADPH oxidase.  相似文献   

20.
The control of cytoskeletal actin and exocytosis was examined in intact and digitonin-permeabilized chromaffin cells. Cytoskeletal actin was assayed by determining the actin content of Triton-insoluble cytoskeletons. The secretagogues nicotine, high K+ and Ba2+ resulted in a rapid reduction in the amount of actin associated with the cytoskeleton. The effect of nicotine but not high K+ on cytoskeletal actin was independent of external Ca2+ and the reduction in cytoskeletal actin was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate suggesting a role for protein kinase C. In digitonin-permeabilized cells micromolar calcium produced both catecholamine secretion and a reduction in cytoskeletal actin. The reduction in cytoskeletal actin was transient. Secretion was enhanced by the GTP analogue guanosine 5'-(3-O-thio)triphosphate and the analogue also reduced cytoskeletal actin at low calcium levels. The effects of guanosine 5'-(3-O-thio)triphosphate were inhibited by the phospholipase C inhibitor neomycin and were mimicked by 12-O-tetradecanoylphorbol-13-acetate. An additional GTP analogue, guanyl-5'-yl imidodiphosphate, had no effect on cytoskeletal actin. These results provide further evidence for a requirement for reorganisation of cortical actin in the secretory processes and suggest that the reduction in actin associated with the cytoskeleton may be mediated by protein kinase C and/or calcium in intact and permeabilized chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号