首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Saturated and mono-unsaturated fatty acids exert differential effects on pancreatic β-cell viability during chronic exposure. Long chain saturated molecules (e.g. palmitate) are cytotoxic to β-cells and this is associated with caspase activation and induction of apoptosis. By contrast, mono-unsaturated fatty acids (e.g. palmitoleate) are not toxic and can protect against the detrimental effects of palmitate. In the present study, we show that the protective actions of palmitoleate in BRIN-BD11 β-cells result in attenuated caspase activation following exposure to palmitate and that a similar response occurs in cells having elevated levels of cAMP. However, unlike palmitoleate, elevation of cAMP was unable to prevent the cytotoxic actions of palmitate since it caused a diversion of the pathway of cell death from apoptosis to necrosis. Palmitoleate did not alter cAMP levels in BRIN-BD11 cells and the results suggest that a change in cAMP is not involved in mediating the protective effects of this fatty acid. Moreover, they reveal that attenuated caspase activation does not always correlate with altered cell viability in cultured β-cells and suggest that mono-unsaturated fatty acids control cell viability by regulating a different step in the apoptotic pathway from that influenced by cAMP.  相似文献   

2.
Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1–1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125–0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.  相似文献   

3.
Taurine (Tau) is involved in beta (β)-cell function and insulin action regulation. Here, we verified the possible preventive effect of Tau in high-fat diet (HFD)-induced obesity and glucose intolerance and in the disruption of pancreatic β-cell morpho-physiology. Weaning Swiss mice were distributed into four groups: mice fed on HFD diet (36 % of saturated fat, HFD group); HTAU, mice fed on HFD diet and supplemented with 5 % Tau; control (CTL); and CTAU. After 19 weeks of diet and Tau treatments, glucose tolerance, insulin sensitivity and islet morpho-physiology were evaluated. HFD mice presented higher body weight and fat depots, and were hyperglycemic, hyperinsulinemic, glucose intolerant and insulin resistant. Their pancreatic islets secreted high levels of insulin in the presence of increasing glucose concentrations and 30 mM K+. Tau supplementation improved glucose tolerance and insulin sensitivity with a higher ratio of Akt phosphorylated (pAkt) related to Akt total protein content (pAkt/Akt) following insulin administration in the liver without altering body weight and fat deposition in HTAU mice. Isolated islets from HTAU mice released insulin similarly to CTL islets. HFD intake induced islet hypertrophy, increased β-cell/islet area and islet and β-cell mass content in the pancreas. Tau prevented islet and β-cell/islet area, and islet and β-cell mass alterations induced by HFD. The total insulin content in HFD islets was higher than that of CTL islets, and was not altered in HTAU islets. In conclusion, for the first time, we showed that Tau enhances liver Akt activation and prevents β-cell compensatory morpho-functional adaptations induced by HFD.  相似文献   

4.
5.
The downregulation of PDX-1 expression plays an important role in development of type 2 diabetes. However, the negative regulator of PDX-1 expression is not well known. In this study, we analyzed the mouse PDX-1 promoter to characterize the effects of ATF3 on PDX-1 expression in pancreatic β-cells. Both thapsigargin treatment, an inducer of ER stress, and ATF3 expression decreased PDX-1 expression in pancreatic β-cells, MIN6N8. Furthermore, they also repressed the activity of −4.5 Kb promoter of mouse PDX-1 gene. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of 0.9 Kb PDX-1 promoter, whereas it did not affect the activity of 0.7 Kb PDX-1 promoter, suggesting that ATF3 responsive element is located between the −903 and −702. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds directly to the promoter region spanning from −759 to −738. Moreover, mutation of the putative ATF/CRE site between −752 and −745 abrogated ATF3-mediated transrepression of the PDX-1 promoter. PDX-1 was decreased in MIN6N8 cells treated with high glucose or high palmitate, whereas ATF3 was increased, indicating that ATF3 plays a role in hyperglycemia or hyperlipidemia-mediated downregulation of PDX-1 expression. Collectively, these results demonstrate that ATF3 represses PDX-1 expression via binding to an ATF3-responsive element in its promoter, which plays an important role in suppression of pancreatic β-cells function.  相似文献   

6.
While glucose-stimulated insulin secretion depends on Ca(2+) influx through voltage-gated Ca(2+) channels in the cell membrane of the pancreatic β-cell, there is also ample evidence for an important role of intracellular Ca(2+) stores in insulin secretion, particularly in relation to drug stimuli. We report here that thiopental, a common anesthetic agent, triggers insulin secretion from the intact pancreas and primary cultured rat pancreatic β-cells. We investigated the underlying mechanisms by measurements of whole cell K(+) and Ca(2+) currents, membrane potential, cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), and membrane capacitance. Thiopental-induced insulin secretion was first detected by enzyme-linked immunoassay, then further assessed by membrane capacitance measurement, which revealed kinetics distinct from glucose-induced insulin secretion. The thiopental-induced secretion was independent of cell membrane depolarization and closure of ATP-sensitive potassium (K(ATP)) channels. However, accompanied by the insulin secretion stimulated by thiopental, we recorded a significant intracellular [Ca(2+)] increase that was not from Ca(2+) influx across the cell membrane, but from intracellular Ca(2+) stores. The thiopental-induced [Ca(2+)](i) rise in β-cells was sensitive to thapsigargin, a blocker of the endoplasmic reticulum Ca(2+) pump, as well as to heparin (0.1 mg/ml) and 2-aminoethoxydiphenyl borate (2-APB; 100 μM), drugs that inhibit inositol 1,4,5-trisphosphate (IP(3)) binding to the IP(3) receptor, and to U-73122, a phospholipase C inhibitor, but insensitive to ryanodine. Thapsigargin also diminished thiopental-induced insulin secretion. Thus, we conclude that thiopental-induced insulin secretion is mediated by activation of the intracellular IP(3)-sensitive Ca(2+) store.  相似文献   

7.
Changes in cytosolic free Ca2+ concentration ([Ca2+]c) play a crucial role in the control of insulin secretion from the electrically excitable pancreatic β-cell. Secretion is controlled by the finely tuned balance between Ca2+ influx (mainly through voltage-dependent Ca2+ channels, but also through voltage-independent Ca2+ channels like store-operated channels) and efflux pathways. Changes in [Ca2+]c directly affect [Ca2+] in various organelles including the endoplasmic reticulum (ER), mitochondria, the Golgi apparatus, secretory granules and lysosomes, as imaged using recombinant targeted probes. Because most of these organelles have specific Ca2+ influx and efflux pathways, they mutually influence free [Ca2+] in the others. In this article, we review the mechanisms of control of [Ca2+] in various compartments and particularly the cytosol, the endoplasmic reticulum ([Ca2+]ER), acidic stores and mitochondrial matrix ([Ca2+]mito), focusing chiefly on the most important physiological stimulus of β-cells, glucose. We also briefly review some alterations of β-cell Ca2+ homeostasis in Type 2 diabetes.  相似文献   

8.
Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.  相似文献   

9.
10.
Cell behavior is determined by intrinsic characteristics and complex interactions with microenvironments. This study demonstrated the performance of a murine pancreatic β-cell line, MIN-6, cultured on tissue-culture polystyrene (TCPS), gelatin, type I collagen, and type IV collagen dishes. MIN-6 cells aggregated as clusters on gelatin, type I collagen, and type IV collagen, which was different from the epithelial morphology of cells grown on TCPS. The diameter and survival rate of aggregated cells did not differ significantly regardless of whether the cells were grown on gelatin or type I collagen, while smaller clusters were observed on type IV collagen. Compared with the monolayers on TCPS, the clusters had a higher insulin stimulation index. The mRNA expression levels of Ins1, Pdx-1, NeuroD1 and connexin 36 were upregulated in clusters relative to monolayers. Conversely, E-cadherin and MafA were downregulated when cells were grown on type IV collagen. Monolayers or cell aggregates grown on type IV collagen were subsequently transplanted into diabetic C57BL/6 mice. Animals that received both monolayers and clusters had decreased blood glucose levels and regained body weight. However, the area under curve for the intraperitoneal glucose tolerance test showed that clusters exhibited superior in vivo performance. This study reveals that a type IV collagen substrate promotes β-cell clustering, regulates gene expression and enhances in vivo performance.  相似文献   

11.
Rorsman P  Braun M  Zhang Q 《Cell calcium》2012,51(3-4):300-308
The glucoregulatory hormones insulin and glucagon are released from the β- and α-cells of the pancreatic islets. In both cell types, secretion is secondary to firing of action potentials, Ca(2+)-influx via voltage-gated Ca(2+)-channels, elevation of [Ca(2+)](i) and initiation of Ca(2+)-dependent exocytosis. Here we discuss the mechanisms that underlie the reciprocal regulation of insulin and glucagon secretion by changes in plasma glucose, the roles played by different types of voltage-gated Ca(2+)-channel present in α- and β-cells and the modulation of hormone secretion by Ca(2+)-dependent and -independent processes. We also consider how subtle changes in Ca(2+)-signalling may have profound impact on β-cell performance and increase risk of developing type-2 diabetes.  相似文献   

12.
Relaxin, a 6-kDa polypeptide hormone, is a potent mediator of matrix turnover and contributes to the loss of collagen and glycosaminoglycans (GAGs) from reproductive tissues, including the fibrocartilaginous pubic symphysis of several species. This effect is often potentiated by β-estradiol. We postulated that relaxin and β-estradiol might similarly contribute to the enhanced degradation of matrices in fibrocartilaginous tissues from synovial joints, which may help explain the preponderance of diseases of specific fibrocartilaginous joints in women of reproductive age. The objective of this study was to compare the in vivo effects of relaxin, β-estradiol, and progesterone alone or in various combinations on GAG and collagen content of the rabbit temporomandibular joint (TMJ) disc fibrocartilage, knee meniscus fibrocartilage, knee articular cartilage, and the pubic symphysis. Sham-operated or ovariectomized female rabbits were administered β-estradiol (20 ng/kg body weight), progesterone (5 mg/kg), or saline intramuscularly. This was repeated 2 days later and followed by subcutaneous implantation of osmotic pumps containing relaxin (23.3 μg/kg) or saline. Tissues were retrieved 4 days later and analyzed for GAG and collagen. Serum relaxin levels were assayed using enzyme-linked immunosorbent assay. Relaxin administration resulted in a 30-fold significant (p < 0.0001) increase in median levels (range, approximately 38 to 58 pg/ml) of systemic relaxin. β-estradiol, relaxin, or β-estradiol + relaxin caused a significant loss of GAGs and collagen from the pubic symphysis and TMJ disc and of collagen from articular cartilage but not from the knee meniscus. Progesterone prevented relaxin- or β-estradiol-mediated loss of these molecules. The loss of GAGs and collagen caused by β-estradiol, relaxin, or β-estradiol + relaxin varied between tissues and was most prominent in pubic symphysis and TMJ disc fibrocartilages. The findings suggest that this targeted modulation of matrix loss by hormones may contribute selectively to degeneration of specific synovial joints.  相似文献   

13.
14.
The Na+-K+-2Cl cotransporter 1 (NKCC1) is one of several transporters that have been implicated for development of hypertension since NKCC1 activity is elevated in hypertensive aorta and vascular contractions are inhibited by bumetanide, an inhibitor of NKCC1. We hypothesized that promoter hypomethylation upregulates the NKCC1 in spontaneously hypertensive rats (SHR). Thoracic aortae and mesenteric arteries were excised, cut into rings, mounted in organ baths and subjected to vascular contraction. The expression levels of nkcc1 mRNA and protein in aortae and heart tissues were measured by real-time PCR and Western blot, respectively. The methylation status of nkcc1 promoter region was analyzed by combined bisulfite restriction assay (COBRA) and bisulfite sequencing. Phenylephrine-induced vascular contraction in a dose-dependent manner, which was inhibited by bumetanide. The inhibition of dose-response curves by bumetanide was much greater in SHR than in Wistar Kyoto (WKY) normotensive rats. The expression levels of nkcc1 mRNA and of NKCC1 protein in aortae and heart tissues were higher in SHR than in WKY. Nkcc1 gene promoter was hypomethylated in aortae and heart than those of WKY. These results suggest that promoter hypomethylation upregulates the NKCC1 expression in aortae and heart of SHR.  相似文献   

15.
Nitric oxide (NO) has been implicated in pancreatic β-cell death in the development of diabetes. The mechanisms underlying NO-induced β-cell death have not been clearly defined. Recently, receptor-interacting protein-1 (RIP1)-dependent necrosis, which is inhibited by necrostatin-1, an inhibitor of RIP1, has emerged as a form of regulated necrosis. Here, we show that NO donor-induced β-cell death was inhibited by necrostatin-1. Unexpectedly, however, RIP1 knockdown neither inhibited cell death nor altered the protective effects of necrostatin-1 in NO donor-treated β-cells. These results indicate that NO donor induces necrostatin-1-inhibitable necrotic β-cell death independent of RIP1. Our findings raise the possibility that NO-mediated β-cell necrosis may be a novel form of signal-regulated necrosis, which play a role in the progression of diabetes.  相似文献   

16.
Taking tissue slices of the embryonic and newborn pancreas is a novel approach for the study of the perinatal development of this gland. The aim of this study was to describe the morphology and physiology of in vivo and in vitro developing -cells. In addition, we wanted to lay a foundation for the functional analysis of other pancreatic cells, either alone or as part of an integrative pancreatic physiology approach. We used cytochemistry and light microscopy to detect specific markers and the whole-cell patch-clamp to assess the function of single -cells. The insulin signal in the embryonic -cells was condensed to a subcellular compartment and redistributed throughout the cytosol during the first 2 days after birth. The hormone distribution correlated well with the development of membrane excitability and hormone release competence in -cells. Endocrine cells survived in the organotypic tissue culture and maintained their physiological properties for weeks. We conclude that our preparation fulfills the criteria for a method of choice to characterize the function of developing pancreas in wild-type and genetically modified mice that die at birth. We suggest organotypic culture for in vitro studies of the development and regeneration of -cells.This work was supported by the European Commission (grant QLG1-CT-2001-02233 to TMR, AR and MR), the DFG Research Center for Molecular Physiology of the Brain (CMPB) and the Max-Planck Society (MR)  相似文献   

17.
Liver X receptors (LXRs) are members of the nuclear receptor superfamily, which have been implicated in lipid homeostasis and more recently in glucose metabolism. Here, we show that glucose does not change LXRα protein level, but affects its localization in pancreatic β-cells. LXRα is found in the nucleus at 8 mM glucose and in the cytoplasm at 4.2 mM. Addition of glucose translocates LXRα from the cytoplasm into the nucleus. Moreover, after the activation of LXR by its synthetic non-steroidal agonist (T0901317), insulin secretion and glucose uptake are increased at 8 mM and decreased at 4.2 mM glucose in a dose-dependent manner. Furthermore, at low glucose condition, okadaic acid reversed LXRα effect on insulin secretion, suggesting the involvement of glucose signaling through a phosphorylation-dependent mechanism.  相似文献   

18.
Thioredoxin interacting protein (TxNIP) functions as an effector of glucotoxicity in pancreatic β-cells. Exendin-4 (Ex-4), a long-term effective GLP-1 receptor agonist, reduces TxNIP level in pancreatic β-cells. Mechanisms underlying this reduction, however, remain largely unknown. We show here that Ex-4, 8-bromo-cAMP, the cAMP promoting agent forskolin, as well as activators of protein kinase A (PKA) and exchange protein activated by cAMP (Epac), all attenuated the effect of high glucose (20 mM) on TxNIP level in the pancreatic β-cell line Ins-1. Forskolin and Ex-4 also reduced TxNIP level in cultured primary rat islets. This repressive effect is at least partially mediated via stimulating proteasome-dependent TxNIP degradation, since the proteasomal inhibitor MG132, but not the lysosomal inhibitor chloroquine, significantly blocked the repressive effect of forskolin. Furthermore, forskolin enhanced TxNIP ubiquitination. Both PKA inhibition and Epac inhibition partially blocked the repressive effect of forskolin on TxNIP level. In addition, forskolin and Ex-4 protected Ins-1 cells from high glucose-induced apoptotic activity, assessed by measuring caspase 3 activity. Finally, knockdown of TxNIP expression led to reduced caspase 3 expression levels and blunted response to forskolin treatment. We suggest that proteasome-dependent TxNIP degradation is a novel mechanism by which Ex-4-cAMP signaling protects pancreatic β cells.  相似文献   

19.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

20.
We demonstrated previously that the activation of ALK7 (activin receptor-like kinase-7), a member of the type I receptor serine/threonine kinases of the TGF-β superfamily, resulted in increased apoptosis and reduced proliferation through suppression of Akt signaling and the activation of Smad2-dependent signaling pathway in pancreatic β-cells. Here, we show that Nodal activates ALK7 signaling and regulates β-cell apoptosis. We detected Nodal expression in the clonal β-cell lines and rodent islet β-cells. Induction of β-cell apoptosis by treatment with high glucose, palmitate, or cytokines significantly increased Nodal expression in clonal INS-1 β-cells and isolated rat islets. The stimuli induced upregulation of Nodal expression levels were associated with elevation of ALK7 protein and enhanced phosphorylated Smad3 protein. Nodal treatment or overexpression of Nodal dose- or time-dependently increased active caspase-3 levels in INS-1 cells. Nodal-induced apoptosis was associated with decreased Akt phosphorylation and reduced expression level of X-linked inhibitor of apoptosis (XIAP). Remarkably, overexpression of XIAP or constitutively active Akt, or ablation of Smad2/3 activity partially blocked Nodal-induced apoptosis. Furthermore, siRNA-mediated ALK7 knockdown significantly attenuated Nodal-induced apoptosis of INS-1 cells. We suggest that Nodal-induced apoptosis in β-cells is mediated through ALK7 signaling involving the activation of Smad2/3-caspase-3 and the suppression of Akt and XIAP pathways and that Nodal may exert its biological effects on the modulation of β-cell survival and β-cell mass in an autocrine fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号