首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the initial steps of implantation, the mouse uterine epithelium of the implantation chamber undergoes apoptosis in response to the interacting blastocyst. With progressing implantation, regression of the decidual cells allows a restricted and coordinated invasion of trophoblast cells into the maternal compartment. In order to investigate pathways of apoptosis in mouse uterine epithelium and decidua during early pregnancy (day 4.5–7.0 post coitum), we have investigated different proteins such as TNFalpha, TNF receptor1, Fas ligand, Fas receptor1, Bax and Bcl2 as well as caspase-9 and caspase-3 using immunohistochemistry. To detect cells undergoing apoptosis the Tunel assay was performed. Immunoreactivity for TNFalpha as well as for TNF receptor1 was observed exclusively in the epithelium of the implantation chamber and the adjacent luminal epithelium from day 4.5 post coitum onwards. In the developing decidua the Fas ligand, but not the Fas receptor, was expressed. Bax and Bcl2 revealed a complementary expression pattern with Bax in the primary and Bcl2 in the adjacent decidual zone. Strong immunolabelling for the initiator caspase-9 was restricted to the decidual compartment, whereas caspase-3 expression characterized the apoptotic uterine epithelium. Only some caspase-3 positive decidual cells were found around the embryo which correlated to the pattern of Tunel staining. Taken together, the apoptotic degeneration of the uterine epithelium seems to be mediated by TNF receptor1 followed by caspase-3, whereas the very moderate regression of the decidua did not show the investigated death receptor, but Bax and Blc2 instead and in addition caspase-9, which indicates a different regulation for epithelial versus decidual apoptosis.  相似文献   

2.
Leukemia inhibitory factor (LIF) has been shown to be essential for the implantation of mouse blastocysts. The present study was designed to determine how LIF protein was hormonally regulated in rabbit and mouse uterus using immunohistochemistry. In unmated rabbits, LIF protein was at a low level in the uterine epithelium and glands, and up-regulated by progesterone alone or estradiol-17β and progesterone combined. Estradiol-17β alone had no apparent effect. In ovariectomized mice, the level of LIF protein was very low in the uterine epithelium and glands, and was up-regulated by estradiol-17β alone or estradiol-17β and progesterone combined. Progesterone alone had no apparent effect. These results suggest that LIF protein is differentially regulated in rabbit and mouse uterus by progesterone and estrogen, respectively. This would explain the high level of LIF protein observed in uterine epithelium and glands prior to blastocyst implantation in the two species with different hormonal requirements for implantation. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Retinoblastoma protein (RB) encoded by Rb1 is a prominent inducer of cell cycle arrest (CCA). The hormone progesterone (P4) promotes CCA in the uterine epithelium and previous studies indicated that P4 activates RB by reducing the phosphorylated, inactive form of RB. Here, we show that embryo implantation is impaired in uterine‐specific Rb1 knockout mice. We observe persistent cell proliferation of the Rb1‐deficient uterine epithelium until embryo attachment, loss of epithelial necroptosis, and trophoblast phagocytosis, which correlates with subsequent embryo invasion failure, indicating that Rb1‐induced CCA and necroptosis of uterine epithelium are involved in embryo invasion. Pre‐implantation P4 supplementation is sufficient to restore these defects and embryo invasion. In Rb1‐deficient uterine epithelial cells, TNFα‐primed necroptosis is impaired, which is rescued by the treatment with a CCA inducer thymidine or P4 through the upregulation of TNF receptor type 2. TNFα is expressed in the luminal epithelium and the embryo at the embryo attachment site. These results provide evidence that uterine Rb1‐induced CCA is involved in TNFα‐primed epithelial necroptosis at the implantation site for successful embryo invasion.  相似文献   

4.
5.
During pregnancy, up‐regulation of heparin‐binding (HB‐) EGF and cyclooxygenase‐2 (COX‐2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G‐protein‐coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA‐producing enzyme autotaxin (ATX) in pregnant mice leads to HB‐EGF and COX‐2 down‐regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up‐regulation of HB‐EGF and COX‐2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre‐implantation‐stage embryos, respectively. Our results indicate that ATX–LPA–LPA3 signaling at the embryo‐epithelial boundary induces decidualization via the canonical HB‐EGF and COX‐2 pathways.  相似文献   

6.
Chondroitin sulfate proteoglycan (CSPG) and heparan sulfate proteoglycan (HSPG) are extracellular matrix proteins that regulate cell adhesion, growth, migration, differentiation and gene expression in many systems. In this study, stromal CSPG label was intense within 10 microm of the uterine lumen. From that distance to the myometrium, CSPG was de-expressed. From the time of implantation on Day 6, this pattern was reversed. CSPG was de-expressed from the uterine epithelium to a distance of approximately 10 microm from the uterine lumen. From that region to the myometrium, labeling was homogeneously intense. This finding suggests that CSPG may inhibit attachment and implantation. Heparan sulfate core proteoglycan (perlecan) was increasingly expressed in the uterine epithelium from the time of implantation, commencing in the basement membrane on Day 6 and extending to the apical epithelium and lateral plasma membranes by Day 7. Perlecan thus appears to facilitate trophoblast attachment and implantation. We propose that attachment and implantation is regulated, at least in part, by the selective and sequential expression of CSPG and perlecan.  相似文献   

7.
8.
The non-receptive uterine luminal epithelium forms an intact polarised epithelial barrier that is refractory to blastocyst invasion. During implantation, organised dismantling of this barrier leads to a receptive state promoting blastocyst attachment. Claudins are tight junction proteins that increase in the uterine epithelium at the time of implantation. Claudin 7 is a member of this family but demonstrates a basolateral localisation pattern that is distinct from other claudins. The present study investigated the localisation, abundance and hormonal regulation of claudin 7 to elucidate a role for the protein during implantation. The results showed that claudin 7 demonstrates a distinct basal and lateral localisation in the uterine luminal and glandular epithelium throughout early pregnancy. On day 1, claudin 7 is abundantly present in response to ovarian estrogen. At the time of implantation, claudin 7 decreases in abundance. This decrease is not dependent on blastocyst presence, as shown by results in pseudopregnant animals. We propose that claudin 7 mediates intercellular adhesions in the uterine epithelium and also may be responsible for stabilising adhesion proteins at the basolateral cell surface. Thus, claudin 7 may function under the maintenance of the uterine luminal epithelial barrier, in the non-receptive state preventing implantation from occurring.  相似文献   

9.
Evidence that prostaglandins are involved in intercellular communication during blastocyst implantation suggested that development and loss of uterine sensitivity to deciduogenic stimuli during early pregnancy might depend upon changes in uterine capacity to mobilize arachidonic acid from phospholipid. We measured levels of arachidonic acid in lipid fractions on Day 6 of pregnancy in uterine segments containing implantation sites, in uterine segments between implantation sites, and in luminal epithelial cells after a deciduogenic stimulus. Arachidonic acid in uterine phospholipid was depleted at implantation sites. With an intrauterine deciduogenic stimulus of hormonally primed ovariectomized rat uteri, the arachidonic acid content of the luminal epithelium decreased. When the fatty acid composition of the luminal epithelium was examined during pseudopregnancy and after progestin-estrogen treatment, however, no changes in arachidonic acid composition and content were observed. These data suggest that during blastocyst implantation, luminal epithelial cells at implantation sites mobilize arachidonic acid from phospholipid for prostaglandin synthesis, but that uterine sensitivity and the capacity to synthesize prostaglandins in response to the blastocyst does not depend upon changes in arachidonic acid levels in uterine phospholipid.  相似文献   

10.
Implantation requires coordination between development of the blastocyst and the sex steroid hormone-regulated differentiation of the uterus. Under the influence of these hormones, the uterine luminal epithelium becomes receptive to attachment of the hatched blastocyst. In this study we sought to identify genes regulated by progesterone (P4) in the uterine epithelium. This resulted in the identification of one novel P4-regulated gene that had been previously found in lipopolysaccharide-stimulated macrophages and called immune response gene-1 (Irg1) and which is the mammalian ortholog of the bacterial gene encoding methylcitrate dehydratase. In adult mice Irg1 expression was limited to the uterine luminal epithelium where it is expressed only during pregnancy with a peak coinciding with implantation. Irg1 mRNA expression is regulated synergistically by P4 and estradiol (E2) but not by E2 alone. In macrophages Irg1 is induced by lipopolysaccharide through a protein kinase C (PKC)-regulated pathway. Now we demonstrate that the PKC pathway is induced in the uterine epithelium at implantation by the synergistic action of P4 and E2 and is responsible for the hormone induction of Irg1. These results suggest that the PKC pathway plays an important role in modulating steroid hormone responsiveness in the uterine luminal epithelium during the implantation window and that Irg1 will be an important marker of this window and may play an important role in implantation.  相似文献   

11.
The calcium-activated cell-adhesion proteins tenascin, E-cadherin and the purinergic (P2X) calcium channel receptors are expressed in an identical spatial and temporal pattern in uterine epithelium in the rat during implantation. On Day 1 of pregnancy (estrous), a diffuse cytoplasmic and specific basement membrane label for each of the proteins was observed throughout the uterine epithelium. On Day 3 of pregnancy, a specific and prominent lateral plasma membrane label for each protein was seen. At the time of implantation on Day 6, an additional and significant increase in the label for each was observed on the apical epithelium. At this time, the label for tenascin in the apical epithelium was increased 2.1-fold (p < 0.0004), that of E-cadherin was increased 2.5-fold (p < 0.0001) and the P2X receptor label was increased 2.0-fold (p < 0.0001). These observations suggest a major role for the calcium-activated adhesion proteins tenascin and E-cadherin in attachment and implantation, with ionic calcium for protein activation possibly provided by the P2X calcium channels. These events occur along the entire length of the uterine epithelium in preparation for blastocyst adhesion.  相似文献   

12.
In mammalian pregnancy, the uterus is remodeled to become receptive to embryonic implantation. Since non‐invasive placentation in marsupials is likely derived from invasive placentation, and is underpinned by intra‐uterine conflict between mother and embryo, species with non‐invasive placentation may employ a variety of molecular mechanisms to maintain an intact uterine epithelium and to prevent embryonic invasion. Identifying such modifications to the uterine epithelium of marsupial species with non‐invasive placentation is key to understanding how conflict is mediated during pregnancy in different mammalian groups. Desmoglein‐2, involved in maintaining lateral cell–cell adhesion of the uterine epithelium, is redistributed before implantation to facilitate embryo invasion in mammals with invasive placentation. We identified localization patterns of this cell adhesion molecule throughout pregnancy in two marsupial species with non‐invasive placentation, the tammar wallaby (Macropus eugenii; Macropodidae), and the brushtail possum (Trichosurus vulpecula; Phalangeridae). Interestingly, Desmoglein‐2 redistribution also occurs in both M. eugenii and T. vulpecula, suggesting that cell adhesion, and thus integrity of the uterine epithelium, is reduced during implantation regardless of placental type, and may be an important component of uterine remodeling. Desmoglein‐2 also localizes to the mesenchymal stromal cells of M. eugenii and to epithelial cell nuclei in T. vulpecula, suggesting its involvement in cellular processes that are independent of adhesion and may compensate for reduced lateral adhesion in the uterine epithelium. We conclude that non‐invasive placentation in marsupials involves diverse and complementary strategies to maintain an intact epithelial barrier.  相似文献   

13.
In males, androgens are essential in maintaining the integrity of the prostate. Androgen-ablation induces apoptosis of the prostatic epithelium. In females, ovariectomy induces apoptosis in uterine epithelium while progesterone inhibits this process. The objective of this study was to determine whether androgen and progesterone inhibit apoptosis, respectively, in mouse prostatic and uterine epithelia via steroid receptors in the epithelium or in the stroma. To address this question, prostatic tissue recombinants were prepared with rat urogenital sinus mesenchyme plus bladder epithelium from wild-type or testicular feminization mutant (Tfm) mice. Thus, prostatic tissue was generated having androgen receptor (AR) in both epithelium and stroma or in the stroma only. Castration of hosts induced apoptosis in the AR-negative Tfm prostatic epithelium with an epithelial apoptotic index virtually identical to prostatic tissue recombinants containing wild-type epithelium. Moreover, this castration-induced prostatic epithelial apoptosis was blocked by testosterone and dihydrotestosterone in both wild-type and Tfm prostatic tissue recombinants. Likewise, uterine tissue recombinants were prepared in which epithelium and/or stroma was devoid of progesterone receptor (PR) by using uterine epithelium and stroma of wild-type and PR knockout mice. Progesterone inhibited uterine epithelial apoptosis only in tissue recombinants prepared with PR-positive stroma. The PR status of the epithelium did not affect epithelial apoptotic index. Therefore, the apoptosis in prostatic and uterine epithelia is regulated by androgen and progesterone via stromal AR and PR, respectively. In both cases, epithelial AR or PR is not required for hormonal regulation of epithelial apoptosis in prostatic and uterine epithelium.  相似文献   

14.
Occlusion and reformation of the rat uterine lumen during pregnancy   总被引:1,自引:0,他引:1  
Implantation sites were obtained from rats at various stages of pregnancy and were studied by light microscopy and scanning electron microscopy. Early in pregnancy the uterine luminal epithelium and the decidual cells in the implantation site formed an implantation chamber containing the conceptus. The epithelial cells lining the chamber and the mouth of the chamber degenerated, and the uterine lumen that was mesometrial to the conceptus was obliterated such that the uterine lumen became discontinuous, and the luminal epithelia of intersite areas were isolated. As the conceptus continued to grow, the decidua-conceptus unit bulged into the intersite areas and was partially covered by an epithelium that eventually became discontinuous and degenerated. Once this had occurred, the luminal epithelium of the intersite areas reestablished contact antimesometrial to the decidua-conceptus unit, and the uterine lumen was again continuous. However, the epithelium lining the lumen was not complete in the mesometrial region because of the vascular connections between the uterine stroma and the placenta. Factors influencing the restructuring of the uterine luminal epithelium were discussed.  相似文献   

15.
Embryonic development of the Chinese hamster (Cricetulus griseus) was studied from the onset of implantation to the formation of the parietal yolk sac placenta. Implantation began on day 6 of pregnancy, when the embryo became fixed to the uterine luminal epithelium. At this time there was no zona pellucida, and microvilli of the trophoblast and uterine epithelium were closely apposed. Stromal cells immediately adjacent to the implantation chamber began to enlarge and accumulate glycogen. By day 7 the mural trophoblast penetrated the luminal epithelium in discrete area. The trophoblast appeared to phagocytize uterine epithelial cells, although epithelium adjoining the points of penetration was normal. In other areas nascent apical protrusions from the uterine epithelium indented the surface of the trophoblast. The epiblast had enlarged and both visceral and parietal endoderm cells were present. The well-developed decidual cells were epithelioid and completely surrounded the implantation chamber. On day 8 the uterine epithelium had disappeared along the mural surface of the embryo. The embryonic cell mass was elongated and filled the yolk sac cavity. Reichert's membrane was well developed. The uterine epithelial basal lamina was largely disrupted, and the trophoblast was in direct contact with decidual cells. Primary and secondary giant trophoblast cells were present and in contact with extravasated maternal blood. The mural trophoblast formed channels in which blood cells were found in close proximity to Reichert's membrane. Decidual cells were in contact with capillary epithelium and in some cases formed part of the vessel wall. Structural changes occurring in the embryo and endometrium during implantation in the Chinese hamster are described for the first time in this report and are compared to those described for some other myomorph rodents.  相似文献   

16.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

17.
Estrous cycle in mammals includes marked epithelial changes in reproductive tract, regulated by sex steroid hormones. In the present work we studied the activation of caspases and apoptotic pattern in uterine epithelial cells during proestrus and estrus, and the effect of mating in this process. In addition, we investigated the role of seminal vesicle secretions on apoptosis of uterine epithelia. Apoptotic index was evaluated by TUNEL assay, caspases‐8, ‐9, and ‐3 activation was detected by Western blot and active caspase‐3 expression was detected by immunohistochemistry. Our results show that mating during proestrus and estrus transition induced changes in the apoptotic pattern of uterine luminal epithelium during estrus, characterized by a delay in the onset of apoptosis as compared with that observed in nonmated rats. No differences in the apoptotic pattern in the glandular epithelium between mated and nonmated rats were observed. Seminal vesicle secretions inhibited luminal epithelium apoptosis, while no changes in glandular epithelium apoptosis were observed. We also demonstrate that activation of caspases‐8, ‐9, and ‐3 occurred in both mated and nonmated rats. Active caspase‐3 was detected in the luminal and glandular epithelium in both nonmated and mated rats. The overall results indicate that mating delays but does not prevent the cellular death of the rat uterine luminal epithelium and seminal vesicle secretions are involved in this delay. Finally, the activation of both the mitochondrial and the membrane receptor pathways of cell death are implicated in the molecular mechanism of uterine apoptosis. Mol. Reprod. Dev. 76: 564–572, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Periimplantation mouse embryos and uterine tissues were examined by means of immunohistochemistry for their expression of the Ca2+ dependent cell-cell adhesion molecules, E- and P-cadherin. E-cadherin was detected in all embryonic cells during periimplantation stages, and also detected in the uterine epithelium. When blastocysts attached to the uterine epithelium, E-cadherin was detected at implantation sites between the mural trophectoderm and the uterine epithelium on 5 day of pregnancy. P-cadherin was first detected in the mural trophectoderm on 4.5-day blastocysts, and then detected in the ectoplacental cone, giant cells and visceral endoderm from 5.5 day.
P-cadherin was also detected in the maternal uterine decidual cells from 5.5 day. After degeneration of uterine epithelial cells, giant cells make direct contact with uterine decidual cells, and P-cadherin was detected at contact sites between these cells.
Thus, the complicated process of implantation seems to be supported by temporal and spatial expression of the multiple classes of cadherins.  相似文献   

19.
We have measured by radioimmunoassay the production of leukotrienes (LTC4 and LTB4) and prostaglandins (PGE2 and PGF) in the rat uterus on Days 1 through 6 of pregnancy. The production is defined as the synthesis minus the degradation for a defined period. The production of LTC4 or LTB4 remained unaltered on days 1–3, but exhibited a marked increase on Day 4 showing a peak at noon. This was then followed by a sharp decline on Day-5 morning. A small but consistent peak in uterine LT production was also noticed on Day-5 noon prior to implantation and this was followed by a decline on Day-6 morning i.e. after initiation of implantation. The production profile of PGE2 and PGE showed a striking resemblance to that of LTs; one exception being that maximal PG production was noticed on Day-4 morning and preceded the peak production of LTs. These vasoactive arachidonate derivatives reached their peak production rates at around the time when a surge in estrogen level is noticed in the uterus on Day 4. Implantation is a local proinflammatory type of reaction that is associated with increased uterine vascular permeability. Vascular changes in inflammatory reactions are provoked by two kinds of chemical mediators: (1) vasodilators and (2) agents that increase vascular permeability. PGs (especially of the E series) are known as vasodilators, while LTs and histamine mediate increases in vascular permeability. Therefore, an interaction between LTs, PGs, and histamine could be important for uterine preparation for implantation and/or implantation .  相似文献   

20.
Localization of uterine arylamidase activity varied between species: arylamidase was found primarily in the apical aspect of uterine epithelial cells in the rabbit, hamster and non-pregnant rat; only moderate staining was observed in these animals in the endometrial stroma. By contrast, arylamidase localization was primarily stromal in the guinea-pig at all stages studied while the luminal epithelium was devoid of reactivity. In all species, uterine enzyme activity increased before implantation but decreased in the vicinity of the blastocyst once implantation had begun. A generalized increase over the entire length of the uterus was seen during the preimplantation phase in the uterine epithelium of the rabbit and in the endometrial stroma of the guinea-pig. Increase in stromal activity appeared to indicate predecidual transformations which were embryo-dependent (i.e. localized to the implantation site) in the rat, or embryo-independent (i.e. occurring throughout the uterus) in the guinea-pig. A subsequent decrease in enzyme activity occurred in the vicinity of the implanting embryo irrespective of the cell type involved (epithelium in the rabbit, stroma/decidua in the rat and guinea-pig). Since arylamidases of the type studied here are integrated membrane proteins, the uniformity of changes observed in different species may reflect profound changes in membrane properties of endometrial cells as an element of the implantation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号