首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sialyl transferase activities of the homogenate of rat ascites hepatome cells were compared with normal rat liver homogenate. The former had only 20% of the activity of the latter when an exogenous acceptor was added in the reaction mixture.Toward endogenous receptors, the activity of the hepatoma cell homogenate was 50% of that of the normal cell homogenate. A stimulation of the activity toward endogenous acceptors was observed when the homogenate of rat ascites hepatoma cells and that of rat liver were mixed. This stimulatory effect seems to be the consequence of utilization of acceptors from ascites hepatoma cells by the sialyl transferases of the rat liver.  相似文献   

2.
Some properties of gamma-glutamyltransferase ((gamma-glutamyl)-peptide: amino-acid gamma-glutamyltransferase EC 2.3.2.2) from azo dye induced hepatoma and fetal rat liver were studied using kinetic and immunological criteria. There was no significant difference between the hepatoma enzyme and fetal rat liver enzyme in some of their catalytic properties. Antisera against the purified hepatoma enzyme also reacted to the fetal rat liver enzyme in the inhibition test and the precipitin reaction. A structural similarity between the hepatoma enzyme and fetal rat liver enzyme was observed and the acquirement of fetal characteristics in hepatoma was discussed.  相似文献   

3.
4.
A Met-tRNAf binding factor (IF-2) from the microsomal fraction of rat liver and rat hepatoma ascites cells was partially purified by ammonium sulphate fractionation, DEAE-cellulose and phosphocellulose chromatography. The factor binds [3H]Met-tRNAf only in the presence of either GTP or GMPPCP. Maximal binding takes place at 37 degrees C and in the absence of Mg++. The factor is specific for Met-tRNAf and does not bind Phe-tRNA from rat liver or from E. coli. The ternary complex [Met-tRNAf . IF-2 . GTP1 binds to 40 S ribosomal subunits from rat liver in the absence of mRNA or poly(A, G, U) without GTP hydrolysis. GDP as well as aurintricarboxylic acid inhibit the ternary complex formation. Both factors are rapidly inactivated by N-ethylmaleimide treatment and by preincubation at 45 degrees C. Heat inactivation is partially prevented by GTP and GDP. With regard to the functional properties there are no significant differences between IF-2 from normal liver and hepatoma cells. On the other hand heat denaturation compared to the rat liver factor, which may be due to differences in contaminating proteins.  相似文献   

5.
Chromatin was prepared from the citric acid nuclei of normal rat liver and Novikoff hepatoma ascites cells. After sulfuric acid extraction, the dehistonized chromatin was solubilized by digestion with deoxyribonuclease I. The proteins of normal liver and of Novikoff hepatoma chromatin fractions were analyzed by two-dimensional polyacrylamide gel electrophoresis. The liver pattern contained 69 components and the hepatoma pattern contained 84 components. Comparison of the two patterns revealed two dense protein spots migrating in the B region in the liver pattern that were absent from the tumor pattern and two dense protein spots migrating in the C region in the tumor pattern that were absent from the liver pattern.  相似文献   

6.
The purpose of this study was to determine firstly whether the isolated enzyme DNA polymerase alpha, which functions within the DNA replicase system, exhibits different sensitivity against the thiol-blocking agent 4-hydroxy-nonenal (HNE) when adult rat liver and the rapidly dividing Yoshida ascites hepatoma were used as enzyme sources and, secondly, whether the reaction catalysed by DNA polymerase is the most sensitive step of the DNA replicase system of native cells. DNA polymerase alpha as well as the non-replicative DNA polymerase beta, isolated from both sources, were remarkably similar with regard to their sensitivity against HNE, as indicated by the incorporation of radioactive label from [3H]deoxy-thymidine-triphosphate into DNA. The transport of [14C]thymidine through the plasma membrane and the incorporation of this precursor into DNA were studied with neonatal hepatocytes and with hepatoma cells. The incorporation of thymidine was inhibited at lower concentrations of HNE in both cell lines than the transport process and the reaction catalysed by DNA polymerase alpha. It was concluded that in the DNA replicase system of native liver and hepatoma cells another process different from the reaction catalysed by DNA polymerase alpha is more sensitive to HNE.  相似文献   

7.
To elucidate the role of poly(ADP-Rib) in the nucleus, DNA synthesis and DNA fragmentation were studied in isolated nuclei of rat liver and rat ascites hepatoma AH-130 cells. Liver and hepatoma cell nuclei formed the same amount of poly(ADP-Rib) per mg of nuclear DNA from NAD. Preincubation of liver nuclei with NAD repressed DNA polymerase activity to 30% of that of the control, but preincubation of hepatoma cell nuclei with NAD did not affect DNA polymerase activity. It was also found that incubation of liver nuclei with NAD prevented the fragmentation of nuclear DNA which occurred without NAD. Incubation of hepatoma cell nuclei with or without NAD did not result in fragmentation of DNA. The role of endonuclease in primer formation for DNA synthesis is discussed.  相似文献   

8.
Plasma membranes were purified from rat liver, muscle and sarcoma tissues and from human liver and hepatoma tissues. The plasma membranes all contained DFP-sensitive, neutral proteolytic activity. Plasma membranes from all normal tissues contained a single DFP-binding protein of apparent molecular weight 68,000. Only the plasma membranes from tumour tissue contained a plasminogen activator; the DFP-binding proteins from these membranes were more diverse than those from the normal samples. The rat liver plasma membrane proteinase was purified. It was a labile enzyme sensitive to inhibition by DFP and by calcium ions, and with a broad substrate specificity. A similar protein was the sole DFP-binding protein in rat liver microsomes. This and the properties of the enzyme suggested a possible role in the processing and secretion of newly-synthesized protein.  相似文献   

9.
We have studied the activity, thiol-dependency and Km of ornithine decarboxylase (ODC) from the following sources: liver of rats subjected to partial hepatectomy or administered thioacetamide, the rat 3924A Morris hepatoma, the rat AH130 Yoshida ascites hepatoma, a mouse transplantable mammary carcinoma and kidney of rats administered testosterone propionate. In order to detect possible changes occurring during in vivo ageing of this enzyme we inhibited protein synthesis with cycloheximide. A gradual decrease of Km during ageing was observed in ODC from liver.  相似文献   

10.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

11.
Rat liver and Morris hepatoma 7777 arylsulfatase A were isolated from the soluble lysosomal extract by a procedure involving blue-Sepharose affinity chromatography, DEAE-cellulose chromatography, hydrophobic chromatography on phenyl-Sepharose and preparative polyacrylamide gel electrophoresis. The preparation obtained by this method was apparently homogenous in disc electrophoresis and in immunoelectrophoresis. The comparative studies revealed that the properties of arylsulfatase A from rat liver and Morris hepatoma 7777 are very similar, considering molecular weight of the native monomer and its subunits, the ability to form tetramers, isoelectric point, Michaelis constant and the anomalous kinetics of the reaction. The twofold elevation of arylsulfatase B activity found in Morris hepatoma 7777 suggests that the enzyme may have certain functions in tumor growth.  相似文献   

12.
Glycolipid composition of purified plasma membranes from rat ascites hepatomas, two island-forming cell-lines and two cell-lines of the free-type, and normal rat liver were compared. Ceramide monohexoside (CMH), ceramide dihexoside (CDH), and hematoside (GM3) were found in normal rat liver cell membranes. The island-type hepatomas contained ceramide trihexoside (CTh) and globoside besides CMH, CDH, and GM3. The free-type of hepatomas were characterized by the presence of asialo-type gangliosides but not GM3. The free-type of hepatomas were characterized by the presence of asialo-type gangliosides but not GM3. Blood group H active fucolipid was a major glycolipid in the free-type of ascites hepatoma cell (AH 7974 F). The increase of glycolipid content in cell membranes seemed to be accompanied with a decrease of cell adhesiveness.  相似文献   

13.
The content of membrane-bound ribosomes in normal rat liver cells is 3 times as high as compared to that of free ribosomes. (K=membrane-bound ribosome RNAs divided by free ribosome RNAs=3, the opposite effect being observed in case of ascites hepatoma cells. A considerable increase in the free ribosome fraction in the liver of hepatoma-bearing rats occurs by the sixth day due to a decrease in the content of hepatoma-bearing rats occurs by the sixth day due to a decrease in the content of membrane-bound ribosomes (K=0.6). Similar, but less-pronounced changes were observed in liver cells of control animals after 48-hour starvation (K=0.9), simulating the condition occurring during the last days of tumour animals' life. Thus, changes in the rativ of membrane-bound to free ribosomes in liver during the ascites tumour growth are probably specifics and are not only due to anorexia in Zajdela hepatoma animals.  相似文献   

14.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

15.
Glutathione peroxidase/glutathionè reductase activity ratio was determined in the high-speed supernatant fraction of the rat livers. The ratio was dependent on age and the ratio increase gradually with the increase in age. The fetal liver showed a ratio of 1.5–2.0, which was almost the same value to those of the 4-dimethylaminoazobenzene-induced primary hepatoma and some transplantable hepatomas originating from the azodye-induced hepatoma. Four cell lines of transplantable ascites hepatoma examined in this study showed the value of 1.2–1.8 for the activity ratio, however, the values of two strains were found to be 2.8–3.0, even though these cell lines were also originated from the azodye-induced hepatoma.Glutathione contents of azodye-induced hepatoma and ascites hepatomas were also similar with those of fetal rat livers.The acquirement of the fetal properties in hepatoma was discussed in relation to glutathione metabolism.  相似文献   

16.
To investigate whether DNA replication in rat hepatoma cells is altered compared with that in normal rat liver, the main replicative enzyme, i.e. the DNA polymerase alpha complex, was partially purified from a slow-growing (TC5123) and a fast-growing (MH3924) Morris hepatoma cell strain as well as from normal rat liver. The purified DNA polymerase alpha complexes contained RNA primase. DNA polymerase alpha activities of these complexes were characterized with regard to both their molecular properties and their dNTP and DNA binding sites. The latter were probed with competitive inhibitors of dNTP binding, resulting in Ki values, and with DNA templates, yielding Km values. The sedimentation coefficients of native DNA polymerases alpha from Morris hepatoma cells were found to be lower than that of polymerase alpha from normal rat liver. Consequently, when following the procedure of Siegel and Monty for determination of molecular mass considerably smaller molecular masses were calculated for polymerases of hepatoma strains (TC5123, 127 kDa; MH3924, 138 kDa; rat liver, 168 kDa). Similar differences were found when the dNTP binding site was probed with inhibitors. Ki values obtained with butylphenyl-dGTP were higher for polymerases of the hepatoma strains than for that of normal rat liver. However, Ki values measured with aphidicolin and butylanilino-dATP were lower for DNA polymerase alpha from the fast-growing hepatoma cell strain than for that from normal rat liver, indicating a reduced affinity of the dNTP binding sites for dATP and dCTP. This reduced affinity could be responsible for lowered specificity of nucleotide selection in the base-pairing process which in turn may cause an enhanced error rate in DNA replication in malignant cells. Furthermore, when the DNA binding site was characterized by Michaelis-Menten constants using gapped DNA as a template, Km values were similar for all three DNA polymerases. In contrast, the Km value measured with single-stranded DNA as a template was found to be lower for DNA polymerase alpha from the fast-growing hepatoma MH3924 than for that from normal rat liver. Thus, the DNA-polymerizing complex from MH3924 combines both higher binding strength to single-stranded DNA templates and decreased nucleotide selection, properties which may enhance replication velocity and may lower fidelity.  相似文献   

17.
Alkaline phosphatase was purified from plasma membranes of rat ascites hepatoma AH-130, the homogenate of which had 50-fold higher specific activity than that found in the liver homogenate. The presence of Triton X-100, 0.5%, was essential to avoid its aggregation and to stabilize its activity. The purified enzyme, a glycoprotien, was homogeneous in polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated a protein molecular weight of 140,000. The addition of beta-mercaptoethanol caused the dissociation of the alkaline phosphatase into two subunits of identical molecular weight, 72,000. Isoelectric focusing revealed that the pI of this enzyme is 4.7. The pH optimum for the purified enzyme was 10.5 or higher with p-nitrophenylphosphate, and slightly lower pH values (pH 9.5--10.2) were obtained when other substrates were used. Of the substrates tested, p-nitrophenylphosphate (Km-0.3 mM) was most rapidly hydrolyzed. Vmax values of other substrates relative to that of p-nitrophenylphosphate were as follows; beta-glycerophosphate, 76%; 5'-TMP, 82%; 5'-AMP, 62%; 5'-IMP, 43%; glucose-6-phosphate, 39%; ADP, 36% and ATP, 15%. More than 90% of the activity of the purified enzyme was irreversibly lost when it was heated at 55 degrees C for 30 min, or exposed either to 10 mM beta-mercaptoethanol for 10 min to 3 M urea for 30 min, or to an acidic pH below pH 5.0 for 2 h. Of the effects by divalent cations, Mg2+ activated the enzyme by 20% whereas Zn2+ strongly inhibited it by 95% at 0.5 mM. EDTA at higher than 1 mM inactivated the enzyme irreversibly, although the effect of EDTA at lower than 0.1 mM was reversible by the addition of divalent cations, particularly by Mg2+. The enzyme was most strongly inhibited by L-histidine among the amino acids tested, and also strongly inhibited by imidazole. These results suggest that alkaline phosphatase of rat hepatoma AH-130 is very similar to that of rat liver in most of the properties reported so far.  相似文献   

18.
Cultured rat hepatoma cells were homogenized and subjected to subcellular fractionation by analytical sucrose density centrifugation to determine the localization of gamma-glutamyltransferase ((5-glutamyl-)-peptide: amino acid 5-glutamyltransferase, EC 2.3.2.2). The activity was exclusively localized to the plasma membrane. Diazotized sulphanilic acid was used as a non-penetrant membrane reagent which inactivates ectoenzymes. With both intact and sonicated cells, only 70-75% inhibition of gamma-glutamyltransferase activity was observed. At least 12% of the total cell complement of gamma-glutamyltransferase activity is highly resistant to inactivation by diazotized sulphanilic acid even after Triton X-100 solubilization. The enzyme was purified from hepatoma cells and its properties compared with enzyme from normal liver. Apart from the striking increase in Vapp there were only minor differences between the enzymes from the two sources. In contrast to the complete abolition of transpeptidase activity of the purified hepatoma enzyme by diazotized sulphanilic acid, the hydrolytic activity of this preparation was only slightly inhibited.  相似文献   

19.
Rat hepatoma cells grown intraperitoneally as an ascites tumour were analysed with respect to their contents of cytosolic glutathione transferases. In contrast with normal liver tissue, the hepatoma cells were dominated by the class Pi glutathione transferase 7-7. All the major hepatic enzyme forms were down-regulated to almost undetectable concentrations. Livers of rats bearing ascites-hepatoma cells expressed low, but significant, amounts of protein which, by electrophoretic and immunochemical properties, appeared identical with transferase 7-7. This enzyme is not detectable in normal hepatocytes. Treatment of rats with trans-stilbene oxide induced the expression of transferase 7-7 in the livers of normal rats as well as in hepatoma-cell-bearing animals. In addition, a 2-fold induction of transferase 7-7 was measured in the hepatoma ascites cells. No significant elevation of any other enzyme forms in the hepatoma cells was noted.  相似文献   

20.
Alkaline phosphatase released from rat liver plasma membrane under usual conditions was electrophoretically not identical with a soluble form in serum which was derived from the liver. The liver-membranous alkaline phosphatase, however, was converted to the serum-soluble form when the liver plasma membrane was treated with n-butanol under the acidic conditions lower than pH 6.5. Such pH-dependent conversion of the enzyme was not observed in plasma membrane of rat ascites hepatoma AH-130 cells. The converting activity for alkaline phosphatase was detected not only in plasma membrane but also in lysosomal membrane of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号