首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740(+)-P740) and (F(A/B)(-)-F(A/B)) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740(+)A(1)(-)-P740A(1)) and ((3)P740-P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A(1)(-)), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450+/-10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000+/-4000 M(-1) cm(-1) at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1 : to approximately 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

2.
Pigment-protein complexes enriched in photosystem II (PS II) have been isolated from the chlorophyll (Chl) d containing cyanobacterium, Acaryochloris marina. A small PS II-enriched particle, we call 'crude reaction centre', contained 20 Chl d, 0.5 Chl a and 1 redox active cytochrome b-559 per 2 pheophytin a, plus the D1 and D2 proteins. A larger PS II-enriched particle, we call 'core', additionally bound the antenna complexes, CP47 and CP43, and had a higher chlorophyll per pheophytin ratio. Pheophytin a could be photoreduced in the presence of a strong reductant, indicating that it is the primary electron acceptor in photosystem II of A. marina. A substoichiometric amount of Chl a (less than one chlorophyll a per 2 pheophytin a) strongly suggests that Chl a does not have an essential role in the photochemistry of PS II in this organism. We conclude that PS II, in A. marina, utilizes Chl d and not Chl a as primary electron donor and that the primary electron acceptor is one of two molecules of pheophytin a.  相似文献   

3.
We have investigated the photosynthetic properties of Acaryochloris marina, a cyanobacterium distinguished by having a high level of chlorophyll d, which has its absorption bands shifted to the red when compared with chlorophyll a. Despite this unusual pigment content, the overall rate and thermodynamics of the photosynthetic electron flow are similar to those of chlorophyll a-containing species. The midpoint potential of both cytochrome f and the primary electron donor of photosystem I (P(740)) were found to be unchanged with respect to those prevailing in organisms having chlorophyll a, being 345 and 425 mV, respectively. Thus, contrary to previous reports (Hu, Q., Miyashita, H., Iwasaki, I. I., Kurano, N., Miyachi, S., Iwaki, M., and Itoh, S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13319-13323), the midpoint potential of the electron donor P(740) has not been tuned to compensate for the decrease in excitonic energy in A. marina and to maintain the reducing power of photosystem I. We argue that this is a weaker constraint on the engineering of the oxygenic photosynthetic electron transfer chain than preserving the driving force for plastoquinol oxidation by P(740), via the cytochrome b(6)f complex. We further show that there is no restriction in the diffusion of the soluble electron carrier between cytochrome b(6)f and photosystem I in A. marina, at variance with plants. This difference probably reflects the simplified ultrastructure of the thylakoids of this organism, where no segregation into grana and stroma lamellae is observed. Nevertheless, chlorophyll fluorescence measurements suggest that there is energy transfer between adjacent photosystem II complexes but not from photosystem II to photosystem I, indicating spatial separation between the two photosystems.  相似文献   

4.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P(+)Q(-), between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (Q(A)). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, Chl(D1). It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

5.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

6.
Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were optimized to provide the highest specific O(2) activity and the instrumental parameters for the EPR measurements of tyrosine Z (Y(Z)) reduction were adjusted to give the best signal-to-noise over spectral resolution. Analysis of the Y(Z)(*) reduction kinetics revealed that ET to the oxygen-evolving complex on the donor side of PSII in A. marina is indistinguishable from that in higher plants and other cyanobacteria. Likewise, the charge recombination kinetics between the first plastoquinone acceptor Q(A) and the donor side of PSII monitored by the chlorophyll fluorescence decay on the seconds time scale are not significantly different between A. marina and non-chlorophyll d organisms, while low-temperature optical absorption spectroscopy identified the primary electron acceptor in A. marina as pheophytin a. The results indicate that, if the PSII primary electron donor in A. marina is made up of chlorophyll d instead of chlorophyll a, then there must be very different interactions with the protein environment to account for the ET properties, which are similar to higher plants and other cyanobacteria. Nevertheless, the water oxidation mechanism in A. marina is kinetically unaltered.  相似文献   

7.
Photochemically active photosystem (PS) I complexes were purified from the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017, and several of their properties were characterized. PS I complexes consist of 11 subunits, including PsaK1 and PsaK2; a new small subunit was identified and named Psa27. The new subunit might replace the function of PsaI that is absent in A. marina. The amounts of pigments per one molecule of Chl d' were 97.0 +/- 11.0 Chl d, 1.9 +/- 0.5 Chl a, 25.2 +/- 2.4 alpha-carotene, and two phylloquinone molecules. The light-induced Fourier transform infrared difference spectroscopy and light-induced difference absorption spectra reconfirmed that the primary electron donor of PS I (P740) was the Chl d dimer. In addition to P740, the difference spectrum contained an additional band at 728 nm. The redox potentials of P740 were estimated to be 439 mV by spectroelectrochemistry; this value was comparable with the potential of P700 in other cyanobacteria and higher plants. This suggests that the overall energetics of the PS I reaction were adjusted to the electron acceptor side to utilize the lower light energy gained by P740. The distribution of charge in P740 was estimated by a density functional theory calculation, and a partial localization of charge was predicted to P1 Chl (special pair Chl on PsaA). Based on differences in the protein matrix and optical properties of P740, construction of the PS I core in A. marina was discussed.  相似文献   

8.
The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses indicated that at least two Chl a molecules were present per each two pheophytin a molecules, and these Chl a molecules are assigned to P(D1) and P(D2). These findings clearly indicate that Chl a is required for water oxidation in PS II.  相似文献   

9.
The chlorophyll d containing cyanobacterium, Acaryochloris marina has provided a model system for the study of chlorophyll replacement in the function of oxygenic photosynthesis. Chlorophyll d replaces most functions of chlorophyll a in Acaryochloris marina. It not only functions as the major light-harvesting pigment, but also acts as an electron transfer cofactor in the primary charge separation reaction in the two photosystems. The Mg-chlorophyll d-peptide coordinating interaction between the amino acid residues and chlorophylls using the latest semi-empirical PM5 method were examined. It is suggested that chlorophyll d possesses similar coordination ligand properties to chlorophyll a, but chlorophyll b possesses different ligand properties. Compared with other studies involving theoretical correlation and our prior experiments, this study suggests that the chlorophyll a-bound proteins will bind chlorophyll d without difficulty when chlorophyll d is available.  相似文献   

10.
We studied the charge recombination characteristics of Photosystem II (PSII) redox components in whole cells of the chlorophyll (Chl) d-dominated cyanobacterium, Acaryochloris marina, by flash-induced chlorophyll fluorescence and thermoluminescence measurements. Flash-induced chlorophyll fluorescence decay was retarded in the mus and ms time ranges and accelerated in the s time range in Acaryochloris marina relative to that in the Chl a-containing cyanobacterium, Synechocystis PCC 6803. In the presence of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, which blocks the Q(B) site, the relaxation of fluorescence decay arising from S(2)Q(A)(-) recombination was somewhat faster in Acaryochloris marina than in Synechocystis PCC 6803. Thermoluminescence intensity of the so called B band, arising from the recombination of the S(2)Q(B)(-) charge separated state, was enhanced significantly (2.5 fold) on the basis of equal amounts of PSII in Acaryochloris marina as compared with Synechocystis 6803. Our data show that the energetics of charge recombination is modified in Acaryochloris marina leading to a approximately 15 meV decrease of the free energy gap between the Q(A) and Q(B) acceptors. In addition, the total free energy gap between the ground state and the excited state of the reaction center chlorophyll is at least approximately 25-30 meV smaller in Acaryochloris marina, suggesting that the primary donor species cannot consist entirely of Chl a in Acaryochloris marina, and there is a contribution from Chl d as well.  相似文献   

11.
Light-induced electron transfer reactions in the chlorophyll a/d-binding Photosystem I reaction centre of Acaryochloris marina were investigated in whole cells by pump-probe optical spectroscopy with a temporal resolution of ~5ns at room temperature. It is shown that phyllosemiquinone, the secondary electron transfer acceptor anion, is oxidised with bi-phasic kinetics characterised by lifetimes of 88±6ns and 345±10ns. These lifetimes, particularly the former, are significantly slower than those reported for chlorophyll a-binding Photosystem I, which typically range in the 5-30ns and 200-300ns intervals. The possible mechanism of electron transfer reactions in the chlorophyll a/d-binding Photosystem I and the slower oxidation kinetics of the secondary acceptors are discussed.  相似文献   

12.
Absorbance difference spectroscopy and redox titrations have been applied to investigate the properties of photosystem I from the chlorophyll d containing cyanobacterium Acaryochloris marina. At room temperature, the (P740+ − P740) and (FA/B − FA/B) absorbance difference spectra were recorded in the range between 300 and 1000 nm while at cryogenic temperatures, (P740+A1 − P740A1) and (3P740 − P740) absorbance difference spectra have been measured. Spectroscopic and kinetic evidence is presented that the cofactors involved in the electron transfer from the reduced secondary electron acceptor, phylloquinone (A1), to the terminal electron acceptor and their structural arrangement are virtually identical to those of chlorophyll a containing photosystem I. The oxidation potential of the primary electron donor P740 of photosystem I has been reinvestigated. We find a midpoint potential of 450 ± 10 mV in photosystem I-enriched membrane fractions as well as in thylakoids which is very similar to that found for P700 in chlorophyll a dominated organisms. In addition, the extinction difference coefficient for the oxidation of the primary donor has been determined and a value of 45,000 ± 4000 M− 1 cm− 1 at 740 nm was obtained. Based on this value the ratio of P740 to chlorophyll is calculated to be 1:~ 200 chlorophyll d in thylakoid membranes. The consequences of our findings for the energetics in photosystem I of A. marina are discussed as well as the pigment stoichiometry and spectral characteristics of P740.  相似文献   

13.
The cyanobacterial genus Acaryochloris is the only known group of oxygenic phototrophs that contain chlorophyll d rather than chlorophyll a as the major photosynthetic pigment. Studies on this organism are still in their earliest stages, and biochemical analysis has rapidly outpaced growth optimization. We have investigated culture growth of the major strains of Acaryochloris marina (MBIC11017 and MBIC10697) by using several published and some newly developed growth media. It was determined that heavy addition of iron significantly enhanced culture longevity. These high-iron cultures showed an ultrastructure with thylakoid stacks that resemble traditional cyanobacteria (unlike previous studies). These cultures also show a novel reversal in the pigment ratios of the photosystem II signature components chlorophyll a and pheophytin a, as opposed to those in previous studies.  相似文献   

14.
Chlorophyll (Chl) d is a major chlorophyll in a novel oxygenic prokaryote Acaryochloris marina. Here we first report the redox potential of Chl d in vitro. The oxidation potential of Chl d was +0.88 V vs. SHE in acetonitrile; the value was higher than that of Chl a (+0.81 V) and lower than that of Chl b (+0.94 V). The oxidation potential order, Chl b>Chl d>Chl a, can be explained by inductive effect of substituent groups on the conjugated pi-electron system on the macrocycle. Corresponding pheophytins showed the same order; Phe b (+1.25 V)>Phe d (+1.21 V)>Phe a (+1.14 V), but the values were significantly higher than those of Chls, which are rationalized in terms of an electron density decrease in the pi-system by the replacement of magnesium with more electronegative hydrogen. Consequently, oxidation potential of Chl a was found to be the lowest among Chls and Phes. The results will help us to broaden our views on photosystems in A. marina.  相似文献   

15.
We investigated the localization, structure and function of the biliproteins of the oxygenic photosynthetic prokaryote Acaryochloris marina, the sole organism known to date that contains chlorophyll d as the predominant photosynthetic pigment. The biliproteins were isolated by means of sucrose gradient centrifugation, ion exchange and gel filtration chromatography. Up to six biliprotein subunits in a molecular mass range of 15.5-18.4 kDa were found that cross-reacted with antibodies raised against phycocyanin or allophycocyanin from a red alga. N-Terminal sequences of the alpha- and beta-subunits of phycocyanin showed high homogeneity to those of cyanobacteria and red algae, but not to those of cryptomonads. As shown by electron microscopy, the native biliprotein aggregates are organized as rod-shaped structures and located on the cytoplasmic side of the thylakoid membranes predominantly in unstacked thylakoid regions. Biochemical and spectroscopic analysis revealed that they consist of four hexameric units, some of which are composed of phycocyanin alone, others of phycocyanin together with allophycocyanin. Spectroscopic analysis of isolated photosynthetic reaction center complexes demonstrated that the biliproteins are physically attached to the photosystem II complexes, transferring light energy to the photosystem II reaction center chlorophyll d with high efficiency.  相似文献   

16.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P+Q, between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (QA). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, ChlD1. It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

17.
The photosystem Ⅱ (PSII) complex of photosynthetic membranes comprises a number of chlorophyll-binding proteins that are important to the electron flow. Here we report that the chlorophyll b-deficient mutant has de creased the amount of light-harvesting complexes with an increased amount of some core polypeptides of PSII,including CP43 and CP47. By means of chlorophyll fluorescence and thermoluminescence, we found that the ratio of Fv/Fm, qP and electron transport rate in the chlorophyll b-deficient mutant was higher compared to the wild type.In the chlorophyll b-deficient mutant, the decay of the primary electron acceptor quinones (QA-) reoxidation was decreased, measured by the fluorescence. Furthermore, the thermolumlnescence studies in the chlorophyll b deficient mutant showed that the B band (S2/S3QB-) decreased slightly and shifted up towards higher temperatures.In the presence of dichlorophenyl-dimethylurea, which is inhibited in the electron flow to the second electron acceptor quinines (QB) at the PSII acceptor side, the maximum of the Q band (S2QA-) was decreased slightly and shifted down to lower temperatures, compared to the wild type. Thus, the electron flow within PSll of the chlorophyll b-deficient mutant was down-regulated and characterized by faster oxidation of the primary electron acceptor quinine QA- via forward electron flow and slower reduction of the oxidation S states.  相似文献   

18.
Most of the chlorophyll (Chl) cofactors in photosystem II (PSII) from Acaryochloris marina are Chld, although a few Chla molecules are also present. To evaluate the possibility that Chla may participate in the P(D1)/P(D2) Chl pair in PSII from A. marina, the P(D1)(?+)/P(D2)(?+) charge ratio was investigated using the PSII crystal structure analyzed at 1.9-? resolution, while considering all possibilities for the Chld-containing P(D1)/P(D2) pair, i.e., Chld/Chld, Chla/Chld, and Chld/Chla pairs. Chld/Chld and Chla/Chld pairs resulted in a large P(D1)(?+) population relative to P(D2)(?+), as identified in Chla/Chla homodimer pairs in PSII from other species, e.g., Thermosynechococcus elongatus PSII. However, the Chld/Chla pair possessed a P(D1)(?+)/P(D2)(?+) ratio of approximately 50/50, which is in contrast to previous spectroscopic studies on A. marina PSII. The present results strongly exclude the possibility that the Chld/Chla pair serves as P(D1)/P(D2) in A. marina PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

19.
Acaryochloris marina, a chlorophyll (Chl) d-dominated cyanobacterium, is a model organism for studying photosynthesis driven by far-red light using Chl d. Furthermore, studies on A. marina may provide insights into understanding how the oxygenic photosynthetic organisms adapt after the acquisition of new Chl. To solve the reaction mechanism of its unique photosynthesis, photosystem (PS) II complexes were isolated from A. marina and analyzed. However, the lack of a molecular genetic method for A. marina prevented us from conducting further studies. We recently developed a transformation system for A. marina and we introduced a chlorophyllide a oxygenase gene into A. marina. The resultant transformant accumulated [7-formyl]-Chl d, which has never been found in nature. In the current study, we isolated PS II complexes that contained [7-formyl]-Chl d. The pigment composition of the [7-formyl]-Chl d-containing PS II complexes was 1.96±0.04 Chl a, 53.21±1.00 Chl d, and 5.48±0.33 [7-formyl]-Chl d per two pheophytin a molecules. In contrast, the composition of the control PS II complexes was 2.01±0.06 Chl a and 62.96±2.49 Chl d. The steady-state fluorescence and excitation spectra of the PS II complexes revealed that energy transfer occurred from [7-formyl]-Chl d to the major Chl d species; however, the electron transfer was not affected by the presence of [7-formyl]-Chl d. These findings demonstrate that artificially produced [7-formyl]-Chl d molecules that are incorporated into PS II replace part of the Chl d molecules and function as the antenna. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

20.
Chen M  Bibby TS  Nield J  Larkum AW  Barber J 《FEBS letters》2005,579(5):1306-1310
Acaryochloris marina is a prochlorophyte-like cyanobacterium containing both phycobilins and chlorophyll d as light harvesting pigments. We show that the chlorophyll d light harvesting system, composed of Pcb proteins, functionally associates with the photosystem II (PSII) reaction center (RC) core to form a giant supercomplex. This supercomplex has a molecular mass of about 2300 kDa and dimensions of 385 A x 240 A. It is composed of two PSII-RC core dimers arranged end-to-end, flanked by eight symmetrically related Pcb proteins on each side. Thus each PSII-RC monomer has four Pcb subunits acting as a light harvesting system which increases the absorption cross section of the PSII-RC core by almost 200%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号