首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The phase reset hypothesis states that the phase of an ongoing neural oscillation, reflecting periodic fluctuations in neural activity between states of high and low excitability, can be shifted by the occurrence of a sensory stimulus so that the phase value become highly constant across trials (Schroeder et al., 2008). From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multi sensory processing (Senkowski et al. 2008). We follow up on a study in which evidence of phase reset was found using a purely behavioral paradigm by including also EEG measures. In this paradigm, presentation of an auditory accessory stimulus was followed by a visual target with a stimulus-onset asynchrony (SOA) across a range from 0 to 404 ms in steps of 4 ms. This fine-grained stimulus presentation allowed us to do a spectral analysis on the mean SRT as a function of the SOA, which revealed distinct peak spectral components within a frequency range of 6 to 11 Hz with a modus of 7 Hz. The EEG analysis showed that the auditory stimulus caused a phase reset in 7-Hz brain oscillations in a widespread set of channels. Moreover, there was a significant difference in the average phase at which the visual target stimulus appeared between slow and fast SRT trials. This effect was evident in three different analyses, and occurred primarily in frontal and central electrodes.  相似文献   

2.
The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep.  相似文献   

3.
A model or hybrid network consisting of oscillatory cells interconnected by inhibitory and electrical synapses may express different stable activity patterns without any change of network topology or parameters, and switching between the patterns can be induced by specific transient signals. However, little is known of properties of such signals. In the present study, we employ numerical simulations of neural networks of different size composed of relaxation oscillators, to investigate switching between in-phase (IP) and anti-phase (AP) activity patterns. We show that the time windows of susceptibility to switching between the patterns are similar in 2-, 4- and 6-cell fully-connected networks. Moreover, in a network (N = 4, 6) expressing a given AP pattern, a stimulus with a given profile consisting of depolarizing and hyperpolarizing signals sent to different subpopulations of cells can evoke switching to another AP pattern. Interestingly, the resulting pattern encodes the profile of the switching stimulus. These results can be extended to different network architectures. Indeed, relaxation oscillators are not only models of cellular pacemakers, bursting or spiking, but are also analogous to firing-rate models of neural activity. We show that rules of switching similar to those found for relaxation oscillators apply to oscillating circuits of excitatory cells interconnected by electrical synapses and cross-inhibition. Our results suggest that incoming information, arriving in a proper time window, may be stored in an oscillatory network in the form of a specific spatio-temporal activity pattern which is expressed until new pertinent information arrives.  相似文献   

4.
Initiating an eye movement towards a suddenly appearing visual target is faster when an accessory auditory stimulus occurs in close spatiotemporal vicinity. Such facilitation of saccadic reaction time (SRT) is well-documented, but the exact neural mechanisms underlying the crossmodal effect remain to be elucidated. From EEG/MEG studies it has been hypothesized that coupled oscillatory activity in primary sensory cortices regulates multisensory processing. Specifically, it is assumed that the phase of an ongoing neural oscillation is shifted due to the occurrence of a sensory stimulus so that, across trials, phase values become highly consistent (phase reset). If one can identify the phase an oscillation is reset to, it is possible to predict when temporal windows of high and low excitability will occur. However, in behavioral experiments the pre-stimulus phase will be different on successive repetitions of the experimental trial, and average performance over many trials will show no signs of the modulation. Here we circumvent this problem by repeatedly presenting an auditory accessory stimulus followed by a visual target stimulus with a temporal delay varied in steps of 2 ms. Performing a discrete time series analysis on SRT as a function of the delay, we provide statistical evidence for the existence of distinct peak spectral components in the power spectrum. These frequencies, although varying across participants, fall within the beta and gamma range (20 to 40 Hz) of neural oscillatory activity observed in neurophysiological studies of multisensory integration. Some evidence for high-theta/alpha activity was found as well. Our results are consistent with the phase reset hypothesis and demonstrate that it is amenable to testing by purely psychophysical methods. Thus, any theory of multisensory processes that connects specific brain states with patterns of saccadic responses should be able to account for traces of oscillatory activity in observable behavior.  相似文献   

5.
《Journal of Physiology》2009,103(6):342-347
The purpose of this study is to investigate information processing in the primary somatosensory system with the help of oscillatory network modelling. Specifically, we consider interactions in the oscillatory 600 Hz activity between the thalamus and the cortical Brodmann areas 3b and 1. This type of cortical activity occurs after electrical stimulation of peripheral nerves such as the median nerve. Our measurements consist of simultaneous 31-channel MEG and 32-channel EEG recordings and individual 3D MRI data. We perform source localization by means of a multi-dipole model. The dipole activation time courses are then modelled by a set of coupled oscillators, described by linear second-order ordinary delay differential equations (DDEs). In particular, a new model for the thalamic activity is included in the oscillatory network. The parameters of the DDE system are successfully fitted to the data by a nonlinear evolutionary optimization method. To activate the oscillatory network, an individual input function is used, based on measurements of the propagated stimulation signal at the biceps. A significant feedback from the cortex to the thalamus could be detected by comparing the network modelling with and without feedback connections. Our finding in humans is supported by earlier animal studies. We conclude that this type of rhythmic brain activity can be modelled by oscillatory networks in order to disentangle feed forward and feedback information transfer.  相似文献   

6.
We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research.  相似文献   

7.
Aertsen et al. (1979) studied single unit recordings from the cochlear nucleus and the auditory cortex of the cat using a stimulus with a wide range of natural and technical sounds and discussed the question of the existence of a stimulus-event relation. The existence of such a stimulus-event relation was investigated by presenting the stimulus twice while recording the spike trains and studying the degree of reproducibility of the neural activity under the two presentations of the stimulus. This paper presents a statistical method to decide whether the two recordings of neural activity are similar, and if so to quantify the degree of similarity. The method is of potential use in multi-unit recordings.  相似文献   

8.
Natural sensory inputs, such as speech and music, are often rhythmic. Recent studies have consistently demonstrated that these rhythmic stimuli cause the phase of oscillatory, i.e. rhythmic, neural activity, recorded as local field potential (LFP), electroencephalography (EEG) or magnetoencephalography (MEG), to synchronize with the stimulus. This phase synchronization, when not accompanied by any increase of response power, has been hypothesized to be the result of phase resetting of ongoing, spontaneous, neural oscillations measurable by LFP, EEG, or MEG. In this article, however, we argue that this same phenomenon can be easily explained without any phase resetting, and where the stimulus-synchronized activity is generated independently of background neural oscillations. It is demonstrated with a simple (but general) stochastic model that, purely due to statistical properties, phase synchronization, as measured by ‘inter-trial phase coherence’, is much more sensitive to stimulus-synchronized neural activity than is power. These results question the usefulness of analyzing the power and phase of stimulus-synchronized activity as separate and complementary measures; particularly in the case of attempting to demonstrate whether stimulus-synchronized neural activity is generated by phase resetting of ongoing neural oscillations.  相似文献   

9.
Salari N  Büchel C  Rose M 《PloS one》2012,7(5):e38090
The state of a neural assembly preceding an incoming stimulus is assumed to modulate the processing of subsequently presented stimuli. The nature of this state can differ with respect to the frequency of ongoing oscillatory activity. Oscillatory brain activity of specific frequency range such as alpha (8-12 Hz) and gamma (above 30 Hz) band oscillations are hypothesized to play a functional role in cognitive processing. Therefore, a selective modulation of this prestimulus activity could clarify the functional role of these prestimulus fluctuations. For this purpose, we adopted a novel non-invasive brain-computer-interface (BCI) strategy to selectively increase alpha or gamma band activity in the occipital cortex combined with an adaptive presentation of visual stimuli within specific brain states. During training, oscillatory brain activity was estimated online and fed back to the participants to enable a deliberate modulation of alpha or gamma band oscillations. Results revealed that volunteers selectively increased alpha and gamma frequency oscillations with a high level of specificity regarding frequency range and localization. At testing, alpha or gamma band activity was classified online and at defined levels of activity, visual objects embedded in noise were presented instantly and had to be detected by the volunteer. In experiment I, the effect of two levels of prestimulus gamma band activity on visual processing was examined. During phases of increased gamma band activity significantly more visual objects were detected. In experiment II, the effect was compared against increased levels of alpha band activity. An improvement of visual processing was only observed for enhanced gamma band activity. Both experiments demonstrate the specific functional role of prestimulus gamma band oscillations for perceptual processing. We propose that the BCI method permits the selective modulation of oscillatory activity and the direct assessment of behavioral consequences to test for functional dissociations of different oscillatory brain states.  相似文献   

10.
Rhythmic sensory or electrical stimulation will produce rhythmic brain responses. These rhythmic responses are often interpreted as endogenous neural oscillations aligned (or “entrained”) to the stimulus rhythm. However, stimulus-aligned brain responses can also be explained as a sequence of evoked responses, which only appear regular due to the rhythmicity of the stimulus, without necessarily involving underlying neural oscillations. To distinguish evoked responses from true oscillatory activity, we tested whether rhythmic stimulation produces oscillatory responses which continue after the end of the stimulus. Such sustained effects provide evidence for true involvement of neural oscillations. In Experiment 1, we found that rhythmic intelligible, but not unintelligible speech produces oscillatory responses in magnetoencephalography (MEG) which outlast the stimulus at parietal sensors. In Experiment 2, we found that transcranial alternating current stimulation (tACS) leads to rhythmic fluctuations in speech perception outcomes after the end of electrical stimulation. We further report that the phase relation between electroencephalography (EEG) responses and rhythmic intelligible speech can predict the tACS phase that leads to most accurate speech perception. Together, we provide fundamental results for several lines of research—including neural entrainment and tACS—and reveal endogenous neural oscillations as a key underlying principle for speech perception.

Just as a child on a swing continues to move after the pushing stops, this study reveals similar entrained rhythmic echoes in brain activity after hearing speech and electrical brain stimulation; perturbation with tACS shows that these brain oscillations help listeners to understand speech.  相似文献   

11.
Neurons in area 17 of the cat visual cortex adapt when stimulated by drifting patterns of optimal orientation, spatial frequency and temporal frequency (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). A component of this adaptation has been attributed to a contrast gain-control mechanism, rather than to neural fatigue, and results in enhanced differential sensitivity around the adapting contrast level (Ohzawa et al. 1982; Albrecht et al. 1984; Ohzawa et al. 1985). Experiments described here suggest that neural response rate, the directional selectivity of the cell, and the temporal frequency of the stimulus, are the principal determinants of adaptation, irrespective of other stimulus parameters such as contrast, velocity, or spatial frequency. The present results can nevertheless accommodate the results of previous studies of adaptation, and additionally provide scope for the resolution of apparent contradictions between results from psychophysical and neurophysiological studies of adaptation.  相似文献   

12.
In this paper, we present a continuous attractor network model that we hypothesize will give some suggestion of the mechanisms underlying several neural processes such as velocity tuning to visual stimulus, sensory discrimination, sensorimotor transformations, motor control, motor imagery, and imitation. All of these processes share the fundamental characteristic of having to deal with the dynamic integration of motor and sensory variables in order to achieve accurate sensory prediction and/or discrimination. Such principles have already been described in the literature by other high-level modeling studies (Decety and Sommerville in Trends Cogn Sci 7:527–533, 2003; Oztop et al. in Neural Netw 19(3):254–271, 2006; Wolpert et al. in Philos Trans R Soc 358:593–602, 2003). With respect to these studies, our work is more concerned with biologically plausible neural dynamics at a population level. Indeed, we show that a relatively simple extension of the classical neural field models can endow these networks with additional dynamic properties for updating their internal representation using external commands. Moreover, an analysis of the interactions between our model and external inputs also shows interesting properties, which we argue are relevant for a better understanding of the neural processes of the brain.  相似文献   

13.
Drifting gratings can modulate the activity of visual neurons at the temporal frequency of the stimulus. In order to characterize the temporal frequency modulation in the cat’s ascending tectofugal visual system, we recorded the activity of single neurons in the superior colliculus, the suprageniculate nucleus, and the anterior ectosylvian cortex during visual stimulation with drifting sine-wave gratings. In response to such stimuli, neurons in each structure showed an increase in firing rate and/or oscillatory modulated firing at the temporal frequency of the stimulus (phase sensitivity). To obtain a more complete characterization of the neural responses in spatiotemporal frequency domain, we analyzed the mean firing rate and the strength of the oscillatory modulations measured by the standardized Fourier component of the response at the temporal frequency of the stimulus. We show that the spatiotemporal stimulus parameters that elicit maximal oscillations often differ from those that elicit a maximal discharge rate. Furthermore, the temporal modulation and discharge-rate spectral receptive fields often do not overlap, suggesting that the detection range for visual stimuli provided jointly by modulated and unmodulated response components is larger than the range provided by a one response component.  相似文献   

14.
The function and modulation of neural circuits underlying motor skill may involve rhythmic oscillations (Feller, 1999 ; Marder and Goaillard, 2006 ; Churchland et al., 2012 ). In the proposed pattern generator for birdsong, the cortical nucleus HVC, the frequency and power of oscillatory bursting during singing increases with development (Crandall et al., 2007 ; Day et al., 2009 ). We examined the maturation of cellular activity patterns that underlie these changes. Single unit ensemble recording combined with antidromic identification (Day et al., 2011 ) was used to study network development in anesthetized zebra finches. Autocovariance quantified oscillations within single units. A subset of neurons oscillated in the theta/alpha/mu/beta range (8–20 Hz), with greater power in adults compared to juveniles. Across the network, the normalized oscillatory power in the 8–20 Hz range was greater in adults than juveniles. In addition, the correlated activity between rhythmic neuron pairs increased with development. We next examined the functional impact of the oscillators on the output neurons of HVC. We found that the firing of oscillatory neurons negatively correlated with the activity of cortico‐basal ganglia neurons (HVCXs), which project to Area X (the song basal ganglia). If groups of oscillators work together to tonically inhibit and precisely control the spike timing of adult HVCXs with coordinated release from inhibition, then the activity of HVCXs in juveniles should be decreased relative to adults due to uncorrelated, tonic inhibition. Consistent with this hypothesis, HVCXs had lower activity in juveniles. These data reveal network changes that shape cortical‐to‐basal ganglia signaling during motor learning. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 754–768, 2013  相似文献   

15.
In a previous study (Lewis et al., 1990), the response of the respiratory rhythm to a perturbing stimulus was investigated using two different stimulus protocols: phase resetting and fixed-delay stimulation. The first protocol consists of measuring the effects of perturbing an oscillator at different phases of the cycle on the duration of the perturbed cycle. The resulting phase response curves (PRCs) can be used to characterize the properties of the oscillator (Winfree, 1980). A second protocol, fixed-delay stimulation, involves perturbing an oscillator at a fixed latency from the onset of the cycle, repeated every n-th cycle. If a single stimulus produces an effect that lasts longer than a single cycle, complicated responses can be expected from fixed-delay stimulation (Lewis et al., 1987). A simple three-phase model for respiratory rhythm generation based on a hypothesis by Richter and coworkers (1982, 1983, 1986) was investigated in the context of these experimental studies. Phase resetting and fixed-delay stimulation protocols were simulated in the model. PRCs of the model resemble those obtained experimentally: a phase-dependent prolongation or shortening of the inspiratory phase depending on the stimulus magnitude, and a slight prolongation of the expiratory phase. Stimuli delivered to the model repetitively during successive inspiratory periods at a fixed-delay produced various combinations of shortened and prolonged cycles, similar to those observed in the experiments. However, the marked increases in cycle duration observed in the experiments during, as well as after, stimulation were not evident in the model. These comparisons suggest that (1) PRCs may not be an adequate way to evaluate certain models of rhythmogenesis, and (2) to improve the present simplified formulation of the three-phase model of the respiratory oscillator, time-varying stimulus dependent effects should be incorporated.  相似文献   

16.
Synchronization or phase-locking between oscillating neuronal groups is considered to be important for coordination of information among cortical networks. Spectral coherence is a commonly used approach to quantify phase locking between neural signals. We systematically explored the validity of spectral coherence measures for quantifying synchronization among neural oscillators. To that aim, we simulated coupled oscillatory signals that exhibited synchronization dynamics using an abstract phase-oscillator model as well as interacting gamma-generating spiking neural networks. We found that, within a large parameter range, the spectral coherence measure deviated substantially from the expected phase-locking. Moreover, spectral coherence did not converge to the expected value with increasing signal-to-noise ratio. We found that spectral coherence particularly failed when oscillators were in the partially (intermittent) synchronized state, which we expect to be the most likely state for neural synchronization. The failure was due to the fast frequency and amplitude changes induced by synchronization forces. We then investigated whether spectral coherence reflected the information flow among networks measured by transfer entropy (TE) of spike trains. We found that spectral coherence failed to robustly reflect changes in synchrony-mediated information flow between neural networks in many instances. As an alternative approach we explored a phase-locking value (PLV) method based on the reconstruction of the instantaneous phase. As one approach for reconstructing instantaneous phase, we used the Hilbert Transform (HT) preceded by Singular Spectrum Decomposition (SSD) of the signal. PLV estimates have broad applicability as they do not rely on stationarity, and, unlike spectral coherence, they enable more accurate estimations of oscillatory synchronization across a wide range of different synchronization regimes, and better tracking of synchronization-mediated information flow among networks.  相似文献   

17.
The relationship between stimulus intensity and the probability of detecting the presence of the stimulus is described by the psychometrical function. The probabilistic nature of this relationship is based on the stochastic behaviour of sensory neural channels and sensory networks involved in perceptual processing (Kiang 1968). This study tries to establish a continuum of variability across different levels of integration in the central nervous system. Once the opening and closing times of ionic channels was simulated, a threshold to the collective behaviour of voltage-gated ionic channels was imposed in order to generate the spike train of a single neuron. Afterwards, the trains of spikes of different neurons were added up, simulating the activity of a sensory nerve. By adding the activity due to the stimulus to the spontaneous neural behaviour, the psychometric function was simulated using a thresholding approach. The results can replicate the stochastic resonance phenomenon, but also open up the possibility that attentional phenomena can be mediated not only by increasing neural activity (bursting or oscillatory), but also by increasing noise at the neural level.  相似文献   

18.
19.
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.  相似文献   

20.
One of development issues for information processing with synchronous oscillations in the brain is how new information is coded and how a comparison with already existing information is performed. In the present work we study a simple neural network model of the thalamo-reticular system based on the Wilson-Cowan model of neuronal oscillatory behavior. Our results show that both cortical control over the thalamus and external sensory input are essential in coordinating and generating spatio-temporal patterns of synchronous activity. A main finding of the numerical simulations is that the network connectivity and the intrinsic oscillatory properties of the neurons result in distinct collective behaviors within the network. By varying the connectivity schemes comparable with lesionated or damaged brain regions our results are in good agreement with in vivo experimental results. Suppressing the sensory input results in temporal oscillatory activity in the beta and gamma range and a strong spatial dependence of the network activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号