首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinson's disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.  相似文献   

2.
Maneb (MB) and paraquat (PQ) provoke oxidative stress-mediated cell damage. Role of xanthine oxidase (XO) in oxidative stress and its association with nitric oxide (NO)/NO synthase (NOS) have been widely reported. While inducible NOS (iNOS) is implicated in MB+PQ-induced toxicity in rat polymorphonuclear leukocytes (PMNs), role of XO and its alliance with iNOS have not yet been established. The study investigated the role of XO in MB+PQ-induced oxidative stress in rat PMNs and its regulation by iNOS and inflammatory cytokines. MB+PQ-augmented reactive oxygen species (ROS), superoxide, nitro-tyrosine, lipid peroxidation (LPO), and nitrite levels along with the catalytic activity of iNOS, superoxide dismutase (SOD), and XO. XO inhibitor, allopurinol (AP), alleviated MB+PQ-induced changes except nitrite content and iNOS activity. Conversely, an iNOS inhibitor, aminoguanidine, mitigated MB+PQ-induced LPO, nitrite, iNOS, and nitro-tyrosine levels; however, no change was observed in ROS, SOD, and XO. Nuclear factor-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), tumor necrosis factor-alpha (TNF-α) inhibitor, pentoxyfylline, and an anti-inflammatory agent, dexamethasone, attenuated MB+PQ-induced increase in XO, superoxide, and ROS with parallel reduction in the expression of interferon-gamma (IFN-γ), TNF-α, and interleukin-1β (IL-1β) in rat PMNs. Exogenous IFN-γ, TNF-α, and IL-1β enhanced superoxide, ROS, and XO in the PMNs of control and MB+PQ-treated rats; however, IFN- γ was found to be the most potent inducer. Moreover, AP ameliorated cytokine-induced free radical generation and restored XO activity towards normalcy. The results thus demonstrate that XO mediates oxidative stress in MB+PQ-treated rat PMNs via iNOS-independent but cytokine (predominantly IFN-γ)-dependent mechanism.  相似文献   

3.
The study aimed to investigate the involvement of nitric oxide (NO) in maneb (MB)- and paraquat (PQ)-induced Parkinson’s disease (PD) phenotype in mouse and its subsequent contribution to lipid peroxidation. Animals were treated intraperitoneally with or without MB and PQ, twice a week for 3, 6 and 9 weeks. In some sets of experiments (9 weeks treated groups), the animals were treated intraperitoneally with or without inducible nitric oxide synthase (iNOS) inhibitor-aminoguanidine, tyrosine kinase inhibitor-genistein, nuclear factor-kappa B (NF-kB) inhibitor-pyrrolidine dithiocarbamate (PDTC) or p38 mitogen activated protein kinase (MAPK) inhibitor-SB202190. Nitrite content and lipid peroxidation were measured in all treated groups along with respective controls. RNA was isolated from the striatum of control and treated mice and reverse transcribed into cDNA. RT-PCR was performed to amplify iNOS mRNA and western blot analysis was done to check its protein level. MB- and PQ-treatment induced nitrite content, expressions of iNOS mRNA and protein and lipid peroxidation as compared with respective controls. Aminoguanidine resulted in a significant attenuation of iNOS mRNA expression, nitrite content and lipid peroxidation demonstrating the involvement of nitric oxide in MB- and PQ-induced lipid peroxidation. Genistein, SB202190 and PDTC reduced the expression of iNOS mRNA, nitrite content and lipid peroxidation in MB- and PQ-treated mouse striatum. The results obtained demonstrate that nitric oxide contributes to an increase of MB- and PQ-induced lipid peroxidation in mouse striatum and tyrosine kinase, p38 MAPK and NF-kB regulate iNOS expression.  相似文献   

4.
The present study was undertaken to investigate the involvement of nitric oxide in the augmentation of benzo(a)pyrene induced cellular injury in polymorphonuclear leukocytes (PMNs). Polymorphs were isolated from the blood collected from Wistar rats treated with and without benzo(a)pyrene (50mg/kg, i.p.) through cardiac puncture. Catalase, superoxide dismutase (SOD), glutathione-s-transferase (GST), myeloperoxidase (MPO) and nitrite content were estimated in PMNs using standard procedures. Inducible nitric oxide synthase (iNOS) and cytochrome P-4501A1 (CYP1A1) expression in PMNs were also analyzed in presence or absence of nitric oxide synthase (NOS) inhibitors, aminoguanidine (AG, 5mM) and L-NG nitro L-arginine methyl ester (L-NAME, 1mM). A significant augmentation was observed in the nitrite content, activities of superoxide dismutase, MPO and GST and the expressions of iNOS and CYP1A1, however, catalase activity was attenuated in PMNs of benzo(a)pyrene treated rats as compared with their respective controls. AG and L-NAME resulted in a significant attenuation in nitrite content, MPO activity and iNOS expression; however, no significant alteration was observed in CYP1A1 expression. CYP1A1 inhibitor alpha-naphthoflavone inhibited the expression of iNOS in PMNs of benzo(a)pyrene treated animals significantly. The results obtained thus suggest that CYP1A1 induces iNOS expression leading to the generation of endogenous nitric oxide (NO) that could be responsible for the augmentation of myeloperoxidase-mediated benzo(a)pyrene-induced injury in PMNs.  相似文献   

5.
Cytochrome P4502E1 (CYP2E1), glutathione-S-transferase A4-4 (GSTA4-4), and inducible nitric oxide synthase (iNOS) are implicated in maneb- and paraquat-induced toxicity leading to various pathological conditions. The study aimed to investigate the role of CYP2E1 in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) and its crosstalk with iNOS-mediated nitrosative stress and GSTA4-4-linked protective effect, if any and their consequent links with the nuclear factor erythoid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression. Rats were treated with/without maneb and/or paraquat for 1, 2, and 3 weeks along with vehicle controls. Subsets of rats were also treated with diallyl sulfide (DAS) or aminoguanidine (AG) along with the respective controls. Maneb and paraquat augmented the reactive oxygen species (ROS), lipid peroxidation (LPO) and 4-hydroxy nonenal (4-HNE) contents, and superoxide dismutase (SOD) activity in the PMNs. However, maneb and paraquat attenuated the reduced glutathione (GSH) level and the expression/activity of total GST and GST-pi. Maneb and paraquat increased the expression/activity of CYP2E1, GSTA4-4, iNOS, Nrf2 and HO-1, and nitrite content. CYP2E1 inhibitor, DAS noticeably alleviated maneb- and paraquat-induced ROS, LPO, 4-HNE, SOD, Nrf2 and HO-1, GST, GSH, and GST-pi while iNOS, nitrite content and GSTA4-4 levels were unchanged. Conversely, AG, an iNOS inhibitor, attenuated maneb- and paraquat-directed changes in nitrite, LPO, iNOS but it did not alter ROS, GSH, SOD, GST, GST-pi, Nrf2, HO-1, CYP2E1, and GSTA4-4. The results demonstrate that CYP2E1 induces iNOS-independent free radical generation and subsequently modulates the Nrf2-dependent HO-1 and 4-HNE-mediated GST expression in maneb- and paraquat-treated PMNs.  相似文献   

6.
Experimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated exposures of MB and/or PQ on lipid peroxidation (LPO), glutathione content (GSH) and toxicant responsive genes, i.e., CYP1A1, 1A2, 2E1, GSTA4-4, GSTA1-1 and GSTA3-3 in the liver and to correlate the same with polymorphonuclear leukocytes (PMNs). A significant augmentation in LPO and reduction in GSH content was observed in a time of exposure dependent manner in the liver and PMNs of MB and/or PQ treated animals. The expression and catalytic activity of CYP2E1 and GSTA4-4 were significantly increased following MB and/or PQ exposure both in the liver and PMNs. Although the expression of GSTA3-3 was increased, the expression of GSTA1-1 was unaltered after MB and/or PQ treatment in both the liver and PMNs. MB augmented the expression and catalytic activity of CYP1A1 in the liver, however, CYP1A2 was unaffected. PQ, on the other hand, significantly increased hepatic CYP1A2 expression and catalytic activity. MB and/or PQ did not produce any significant changes in CYP1A1 and CYP1A2 in PMNs. The results of the study thus demonstrate that MB and PQ differentially regulate hepatic CYP1A1 and CYP1A2 while LPO, GSH, CYP2E1, GSTA4-4 and GSTA3-3 are modulated in the similar fashions both in the liver and PMNs.  相似文献   

7.
Paraquat (PQ) is a widely used herbicide that can cause severe oxidative and fibrotic injuries in lung tissue. Due to the antioxidant and anti-inflammatory properties of chlorogenic acid (CGA), the present study investigated its effects on PQ-induced pulmonary toxicity. To this end, 30 male rats were randomly categorized into five groups of six. Initially, the first and third groups were treated intraperitoneally (IP) with normal saline and CGA (80 mg/kg) for 28 consecutive days, respectively. The second, fourth, and fifth groups were treated with normal saline and 20 and 80 mg/kg of CGA for 28 consecutive days, respectively, and received a single dose of PQ (IP, 20 mg/kg) on Day 7. Then, the animals were anesthetized with ketamine and xylazine, and lung tissue samples were collected for biochemical and histological examinations. The results showed that PQ significantly increased hydroxyproline (HP) and lipid peroxidation (LPO) and decreased the lung tissue antioxidant capacity. In addition, myeloperoxidase (MPO) activity increased significantly, while glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) activity declined substantially. The administration of therapeutic doses of CGA could prevent the oxidative, fibrotic, and inflammatory effects of PQ-induced lung toxicity, and these changes were consistent with histological observations. In conclusion, CGA may improve the antioxidant defense of lung tissue and prevent the spread of inflammation and the development of PQ-induced fibrotic injuries by enhancing antioxidant enzymes and preventing inflammatory cell infiltration.  相似文献   

8.
Nitric oxide, superoxide, and lipid peroxidation (LPO) produced under oxidative stress may contribute to the development of postoperative adhesions. The objective of this study was to determine the effects of polychlorinated biphenyls (PCBs) on LPO, superoxide dismutase, myeloperoxidase (MPO), and nitrite/nitrate in human normal peritoneal and adhesion fibroblasts. PCB treatment reduced inducible nitric oxide synthase (iNOS) expression as well as levels of nitrite/nitrate in both cell lines. Although there was no difference in iNOS expression between the two cell lines, adhesion fibroblasts manifested lower basal levels of MPO compared to normal peritoneal fibroblasts. There was a reduction in MPO expression and its activity in response to PCB treatment in normal peritoneal fibroblasts; however, this effect was minimal in adhesion fibroblasts. Moreover, adhesion fibroblasts manifested higher levels of LPO compared to normal peritoneal fibroblasts, whereas PCB treatment increased LPO levels in both cell types. We conclude that PCBs promote the development of the adhesion phenotype by generating an oxidative stress environment. This is evident by lower iNOS, MPO, and nitrite/nitrate and a simultaneous increase in LPO. Loss of MPO activity, possibly through a mechanism involving MPO heme depletion and free iron release, is yet another source of oxidative stress.  相似文献   

9.
Many individuals with cardiovascular diseases undergo periodic exercise conditioning with or with out medication. Therefore, this study investigated the interaction of exercise training and chronic nitric oxide synthase (NOS) inhibitor (Nitro-L-Arginine Methyl Ester, L-NAME) treatment on blood pressure and its correlation with aortic nitric oxide (NO), antioxidant defense system and oxidative stress parameters in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, subcutaneous for 8 weeks) and (4) ET + L-NAME. Blood pressure (BP) was monitored weekly for 8 weeks with tail-cuff method. The animals were sacrificed 24 h after last treatments and thoracic aortic rings were isolated and analyzed. Exercise conditioning resulted in a significant increase in respiratory exchange ratio (RER), aortic NO production, NO synthase activity and inducible iNOS protein expression. Training significantly enhanced aortic GSH levels, GSH/GSSG ratio and up-regulation of aortic CuZn-SOD, Mn-SOD, catalase (CAT) glutathione peroxidase (GSH-Px) activity and protein expression and significantly decreased aortic lipid peroxidation. Chronic L-NAME administration resulted in a significant depletion of aortic NO, NOS activity, endothelial (eNOS) and iNOS protein expression, GSH level, GSH/GSSG ratio, down-regulation of aortic antioxidant enzyme activities and protein expressions. Aortic xanthine oxidase (XO) activity significantly increased with increased lipid peroxidation and protein oxidation after L-NAME administration. The biochemical changes were accompanied by increased in BP. Interaction of training and chronic NOS inhibitor treatment resulted in normalization of BP and aortic antioxidant enzyme activity and protein expression, up-regulation of aortic GSH/GSSG ratio, NO levels, Mn-SOD protein expression, depletion of GSSG, protein oxidation and lipid peroxidation. The data suggest that training attenuated the oxidative injury caused by chronic NOS inhibitor treatment by up-regulating the NO and antioxidant systems and lowering the BP in rats.  相似文献   

10.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

11.
In this study, we demonstrated the protective effects of β-hydroxybutyrate (β-HB) against paraquat (PQ)-induced kidney injury and elucidated the underlying molecular mechanisms. By histological examination and renal dysfunction specific markers (serum BUN and creatinine) assay, β-HB could protect the PQ-induced kidney injury in rat. PQ-induced kidney injury is associated with oxidative stress, which was measured by increased lipid peroxidation (MDA) and decreased intracellular anti-oxidative abilities (SOD, CAT and GSH). β-HB pretreatment significantly attenuated that. Caspase-mediated apoptosis pathway contributed importantly to PQ toxicity, as revealed by the activation of caspase-9/-3, cleavage of PARP, and regulation of Bcl-2 and Bax, which were also effectively blocked by β-HB. Moreover, treatment of PQ strongly decreased the nuclear Nrf2 levels. However, pre-treatment with β-HB effectively suppressed this action of PQ. This may imply the important role of β-HB on Nrf2 pathway. Taken together, this study provides a novel finding that β-HB has a renoprotective ability against paraquat-induced kidney injury.  相似文献   

12.
The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   

13.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

14.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

15.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

16.
《Free radical research》2013,47(10):1207-1222
Abstract

The study was undertaken to investigate the effect of zinc (Zn) on glutathione S-transferase (GST) and superoxide dismutases (SOD) activities and on the expressions of cytosolic Cu, Zn-SOD (SOD1), mitochondrial Mn-SOD (SOD2), γ-glutamyl cysteine synthetase (γ-GCS) and heme oxygenase-1 (HO-1) in the nigrostriatal tissue of rats. Additionally, Zn-induced alterations in the neurobehavioral parameters, lipid peroxidation (LPO), striatal dopamine and its metabolites and tyrosine hydroxylase (TH) protein expression were measured to assess their correlations with the oxidative stress. Zn exposure reduced the locomotor activity, rotarod performance, striatal dopamine and its metabolites and TH protein expression. LPO, total SOD, SOD1 and SOD2 activities were increased while GST and catalase were reduced in a dose and time dependent manner. Expressions of SOD1 and HO-1 were increased while no change was observed in SOD2 and γ-GCS expressions. The results obtained suggest that Zn-induced augmentation of total SOD, SOD1, SOD2 and HO-1 was associated with increased oxidative stress and neurodegenerative indexes indicating the involvement of both cytosolic and mitochondrial machinery in Zn-induced oxidative stress leading to dopaminergic neurodegeneration.  相似文献   

17.
Organophosphate (OP) pesticides such as dimethoate and malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. It is possible that vitamin E being present at the cell membrane site may prevent OP-induced oxidative damage. In the present study, rats were pretreated orally with vitamin E (250 mg/kg body wt, twice a week for 6 weeks) prior to oral administration of a single low dose of dimethoate and/or malathion (0.01% LD(50)). The result showed that treatment with OP increased lipid peroxidation (LPO) in erythrocytes, however, vitamin E pretreated rats administered OP's showed decreased LPO in erythrocytes. The increase in the activities of superoxide dismutase (SOD) and catalase (CAT) and total-SH content in erythrocytes from dimethoate and/or malathion treated rats as compared to control appears to be a response towards increased oxidative stress. Vitamin E pretreated animals administered OP's showed a lowering in these parameters as compared to OP treated rats which indicates that vitamin E provide protection against OP-induced oxidative stress. The glutathione-S-transferase (GST) activity in erythrocytes was inhibited in OP intoxicated rats which partially recovered in vitamin E pretreated animals administered OP's. Inhibition in erythrocyte and serum acetylcholinesterase (AChE) activity was not relieved in vitamin E pretreated rats administered OP's probably due to the competitive nature of enzyme inhibition by OP's. The results show that vitamin E may amelierate OP-induced oxidative stress by decreasing LPO and altering antioxidant defense system in erthrocytes.  相似文献   

18.
The protective effect of a cytokinin benzyladenine (BA), against toxicity of paraquat (PQ), a widely used herbicide and a well-known oxidative stress inducer, was investigated in the leaves of maize. Maize leaves have been pretreated with BA at concentrations of 1, 10 and 100 microM and afterwards treated with PQ. At all concentrations tested, BA retarded PQ-induced decreases in chlorophyll, carotenoid and ascorbic acid contents. Pretreatment with 10 and 100 microM of BA significantly increased superoxide dismutase (SOD) activity after 8 h of PQ treatment but there was no significant change in SOD activity in the leaves pretreated with BA at 12 and 24 h. However, peroxidase activity significantly increased in 100 microM of BA pretreated leaves. Results indicate that pretreatment with BA reduce PQ toxicity and BA-treated plants might become more tolerant against oxidative stress.  相似文献   

19.
Nitric oxide (NO) plays a role in regulating the mucosal integrity of the stomach. However, its part in the mucosal defense of the inflamed stomach remains unclear. In the present study, we examined the effects of various NO synthase (NOS) inhibitors on gastric ulcerogenic and acid secretory responses following daily exposure of the stomach to iodoacetamide and investigated the role of each NOS isozyme in gastric protection from subchronic mucosal irritation. Gastric mucosal irritation was induced in rats by addition of 0.1% iodoacetamide to drinking water, and the gastric mucosa was examined on the 6th day. L-NAME (a nonselective NOS inhibitor: 20 mg/kg) or aminoguanidine (a selective iNOS inhibitor: 20 mg/kg) was given s.c. twice 24 h and 3 h before the termination of iodoacetamide treatment. Giving iodoacetamide in drinking water for 5 days produced minimal damage in the stomach with an increase in myeloperoxidase (MPO) activity and lipid peroxidation. Iodoacetamide treatment up-regulated the expression of iNOS mRNA and NO production in the stomach, without affecting nNOS expression. Both L-NAME and aminoguanidine markedly aggravated gastric lesions induced by iodoacetamide treatment, with a further enhancement in MPO activity and lipid peroxidation. Basal acid secretion as determined in pylorous-ligated stomachs was decreased following iodoacetamide treatment, but the response was significantly restored by both L-NAME and aminoguanidine. These results suggest that endogenous NO derived from both cNOS and iNOS is involved in mucosal defense of the inflamed stomach, partly by decreasing acid secretion, and contributes to maintaining mucosal integrity under such conditions.  相似文献   

20.
When radish chloroplasts were pretreated with 1 mM spermidine (Spd) and then exposed to 30 M paraquat (PQ), they improved their tolerance to subsequent PQ-induced oxidative damages. That included the decreases in the contents of chlorophyll, protein, and ascorbate, as well as the increases in malondialdehyde (MDA) and H2O2 levels. Analysis of antioxidant enzymes showed that Spd pretreatment effectively prevented the PQ-induced decreases in the total activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX). In contrast, the normally enhanced activities of dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in PQ-treated chloroplasts were reversed by Spd pretreatment In a native gel assay, the Cu/ZnSOD isozyme, which disappeared under the PQ alone treatment, was significantly recovered when tissues were pretreated with Spd. The dominant APX4 isozyme activity, which was preferentially decreased in response to PQ alone treatment, was also strongly reactivated by earlier Spd exposure. Therefore, we suggest that Spd could play a substantial role in protecting the radish chloroplasts from PQ stress. Furthermore, the enhancement of the Cu/ZnSOD and APX4 isozymes by Spd pretreatment seems to be responsible for prevention of the PQ-induced decreases in the total activities of SOD and APX, thereby providing a tolerance to PQ toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号